Articles | Volume 8, issue 8
https://doi.org/10.5194/amt-8-3229-2015
https://doi.org/10.5194/amt-8-3229-2015
Research article
 | 
13 Aug 2015
Research article |  | 13 Aug 2015

A study of turbulent fluxes and their measurement errors for different wind regimes over the tropical Zongo Glacier (16° S) during the dry season

M. Litt, J.-E. Sicart, and W. Helgason

Related authors

Relative performance of empirical and physical models in assessing the seasonal and annual glacier surface mass balance of Saint-Sorlin Glacier (French Alps)
Marion Réveillet, Delphine Six, Christian Vincent, Antoine Rabatel, Marie Dumont, Matthieu Lafaysse, Samuel Morin, Vincent Vionnet, and Maxime Litt
The Cryosphere, 12, 1367–1386, https://doi.org/10.5194/tc-12-1367-2018,https://doi.org/10.5194/tc-12-1367-2018, 2018
Surface-layer turbulence, energy balance and links to atmospheric circulations over a mountain glacier in the French Alps
Maxime Litt, Jean-Emmanuel Sicart, Delphine Six, Patrick Wagnon, and Warren D. Helgason
The Cryosphere, 11, 971–987, https://doi.org/10.5194/tc-11-971-2017,https://doi.org/10.5194/tc-11-971-2017, 2017
Short summary

Related subject area

Subject: Others (Wind, Precipitation, Temperature, etc.) | Technique: In Situ Measurement | Topic: Data Processing and Information Retrieval
Bias correction and application of labeled smartphone pressure data for evaluating the best track of landfalling tropical cyclones
Ge Qiao, Yuyao Cao, Qinghong Zhang, Juanzhen Sun, Hui Yu, and Lina Bai
Atmos. Meas. Tech., 18, 829–841, https://doi.org/10.5194/amt-18-829-2025,https://doi.org/10.5194/amt-18-829-2025, 2025
Short summary
Adaptation of RainGaugeQC algorithms for quality control of rain gauge data from professional and non-professional measurement networks
Katarzyna Ośródka, Jan Szturc, Anna Jurczyk, and Agnieszka Kurcz
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2024-204,https://doi.org/10.5194/amt-2024-204, 2025
Revised manuscript accepted for AMT
Short summary
Double-moment normalization of hail size number distributions over Switzerland
Alfonso Ferrone, Jérôme Kopp, Martin Lainer, Marco Gabella, Urs Germann, and Alexis Berne
Atmos. Meas. Tech., 17, 7143–7168, https://doi.org/10.5194/amt-17-7143-2024,https://doi.org/10.5194/amt-17-7143-2024, 2024
Short summary
The role of time averaging of eddy covariance fluxes on water use efficiency dynamics of maize
Arun Rao Karimindla, Shweta Kumari, Saipriya S R, Syam Chintala, and BVN P. Kambhammettu​​​​​​​
Atmos. Meas. Tech., 17, 5477–5490, https://doi.org/10.5194/amt-17-5477-2024,https://doi.org/10.5194/amt-17-5477-2024, 2024
Short summary
Number- and size-controlled rainfall regimes in the Netherlands: physical reality or statistical mirage?
Marc Schleiss
Atmos. Meas. Tech., 17, 4789–4802, https://doi.org/10.5194/amt-17-4789-2024,https://doi.org/10.5194/amt-17-4789-2024, 2024
Short summary

Cited articles

Andreas, E.: Parameterizing scalar transfer over snow and ice: a review, J. Hydrometeorol., 3, 417–432, https://doi.org/10.1175/1525-7541(2002)003<0417:PSTOSA>2.0.CO;2, 2002.
Aubinet, M., Vesala, T., and Papale, D.: Eddy Covariance: a Practical Guide to Measurement and Data Analysis, Springer, the Netherlands, 2012.
Berkowicz, R. and Prahm, L.: Evaluation of the profile method for estimation of surface fluxes of momentum and heat, Atmos. Environ., 16, 2809–2819, https://doi.org/10.1016/0004-6981(82)90032-4, 1982.
Billesbach, D.: Estimating uncertainties in individual eddy covariance flux measurements: A comparison of methods and a proposed new method, Agr. Forest Meteorol., 151, 394–405, https://doi.org/10.1016/j.agrformet.2010.12.001, 2011.
Box, J. E. and Steffen, K.: Sublimation on the Greenland Ice Sheet from automated weather station observations, J. Geophys. Res., 106, 33965, https://doi.org/10.1029/2001JD900219, 2001.
Download
Short summary
We deal with surface turbulent flux calculations on a tropical glacier and analyse the related errors. We use data from two eddy-covariance systems and wind speed and temperature profiles collected during a 2-month measurement campaign undertaken within the atmospheric surface layer of the glacier. We show the largest error sources are related to roughness length uncertainties and to nonstationarity of the flow induced by the interaction of outer-layer eddies with the surface-layer flow.
Share