Articles | Volume 8, issue 2
Research article
23 Feb 2015
Research article |  | 23 Feb 2015

Quantifying error of lidar and sodar Doppler beam swinging measurements of wind turbine wakes using computational fluid dynamics

J. K. Lundquist, M. J. Churchfield, S. Lee, and A. Clifton

Related authors

Investigating the physical mechanisms that modify wind plant blockage in stable boundary layers
Miguel Sanchez Gomez, Julie K. Lundquist, Jeffrey D. Mirocha, and Robert S. Arthur
Wind Energ. Sci., 8, 1049–1069,,, 2023
Short summary
Annual Variability of Wake Impacts on Mid-Atlantic Offshore Wind Plant Deployments
David Rosencrans, Julie K. Lundquist, Mike Optis, Alex Rybchuk, Nicola Bodini, and Michael Rossol
Wind Energ. Sci. Discuss.,,, 2023
Revised manuscript under review for WES
Short summary
Grand Challenges: wind energy research needs for a global energy transition
Paul Veers, Katherine Dykes, Sukanta Basu, Alessandro Bianchini, Andrew Clifton, Peter Green, Hannele Holttinen, Lena Kitzing, Branko Kosovic, Julie K. Lundquist, Johan Meyers, Mark O'Malley, William J. Shaw, and Bethany Straw
Wind Energ. Sci., 7, 2491–2496,,, 2022
Short summary
The sensitivity of the Fitch wind farm parameterization to a three-dimensional planetary boundary layer scheme
Alex Rybchuk, Timothy W. Juliano, Julie K. Lundquist, David Rosencrans, Nicola Bodini, and Mike Optis
Wind Energ. Sci., 7, 2085–2098,,, 2022
Short summary
Behavior and mechanisms of Doppler wind lidar error in varying stability regimes
Rachel Robey and Julie K. Lundquist
Atmos. Meas. Tech., 15, 4585–4622,,, 2022
Short summary

Related subject area

Subject: Others (Wind, Precipitation, Temperature, etc.) | Technique: Remote Sensing | Topic: Validation and Intercomparisons
Extended validation of Aeolus winds with wind-profiling radars in Antarctica and Arctic Sweden
Sheila Kirkwood, Evgenia Belova, Peter Voelger, Sourav Chatterjee, and Karathazhiyath Satheesan
Atmos. Meas. Tech., 16, 4215–4227,,, 2023
Short summary
The impact of Aeolus winds on near-surface wind forecasts over tropical ocean and high-latitude regions
Haichen Zuo and Charlotte Bay Hasager
Atmos. Meas. Tech., 16, 3901–3913,,, 2023
Short summary
Long-term validation of Aeolus L2B wind products at Punta Arenas, Chile, and Leipzig, Germany
Holger Baars, Joshua Walchester, Elizaveta Basharova, Henriette Gebauer, Martin Radenz, Johannes Bühl, Boris Barja, Ulla Wandinger, and Patric Seifert
Atmos. Meas. Tech., 16, 3809–3834,,, 2023
Short summary
Daily satellite-based sunshine duration estimates over Brazil: Validation and inter-comparison
Maria Lívia Lins Mattos Gava, Simone Marilene Sievert da Costa Coelho, and Anthony Carlos Silva Porfírio
EGUsphere,,, 2023
Short summary
Turbulence kinetic energy dissipation rate: assessment of radar models from comparisons between 1.3 GHz wind profiler radar (WPR) and DataHawk UAV measurements
Hubert Luce, Lakshmi Kantha, Hiroyuki Hashiguchi, Dale Lawrence, Abhiram Doddi, Tyler Mixa, and Masanori Yabuki
Atmos. Meas. Tech., 16, 3561–3580,,, 2023
Short summary

Cited articles

Aitken, M. L., Rhodes, M. E., and Lundquist, J. K.: Performance of a wind-profiling lidar in the region of wind turbine rotor disks, J. Atmos. Ocean. Tech., 29, 347–355, 2012.
Aitken, M. L., Banta, R. M., Pichugina, Y. L., and Lundquist, J. K.: Quantifying wind turbine wake characteristics from scanning remote sensor data, J. Atmos. Ocean. Tech., 31, 765–787,, 2014a.
Aitken, M. L., Kosovic, B., Mirocha, J., and Lundquist, J. K.: Large-eddy simulation of wind turbine wake dynamics in the stable boundary layer using the Weather Research and Forecasting Model, J. Renew. Sustain. Ener., 6, 033137,, 2014b.
Banakh, V. A. and Smalikho, I. N.: Estimation of turbulent energy dissipation rate from data of pulse Doppler lidar, Atmos. Oceanic Opt., 10, 957–965, 1997.
Barthelmie, R. J., Folkerts, L., Ormel, F. T., Sanderhoff, P., Eecen, P. J., Stobbe, O., and Nielsen, N. M.: Offshore wind turbine wakes measured by sodar, J. Atmos. Ocean. Tech., 20, 466–477,<466:OWTWMB>2.0.CO;2, 2003.
Short summary
Wind-profiling lidars are now regularly used in boundary-layer meteorology and in applications like wind energy, but their use often relies on assuming homogeneity in the wind. Using numerical simulations of stable flow past a wind turbine, we quantify the error expected because of the inhomogeneity of the flow. Large errors (30%) in winds are found near the wind turbine, but by three rotor diameters downwind, errors in the horizontal components have decreased to 15% of the inflow.