Articles | Volume 9, issue 4
https://doi.org/10.5194/amt-9-1461-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/amt-9-1461-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
A fast SWIR imager for observations of transient features in OH airglow
Patrick Hannawald
CORRESPONDING AUTHOR
Institute of Physics – University of Augsburg, Augsburg, Germany
Carsten Schmidt
German Remote Sensing Data Center – German Aerospace Center, Oberpfaffenhofen, Germany
Sabine Wüst
German Remote Sensing Data Center – German Aerospace Center, Oberpfaffenhofen, Germany
Michael Bittner
Institute of Physics – University of Augsburg, Augsburg, Germany
German Remote Sensing Data Center – German Aerospace Center, Oberpfaffenhofen, Germany
Related authors
Sabine Wüst, Jakob Strutz, Patrick Hannawald, Jonas Steffen, Rainer Lienhart, and Michael Bittner
EGUsphere, https://doi.org/10.5194/egusphere-2025-4611, https://doi.org/10.5194/egusphere-2025-4611, 2025
Short summary
Short summary
Since June 2019, an infrared camera has been scanning the nearly entire sky (diameter: 500 km) above DLR Oberpfaffenhofen (48.09° N, 11.28° E), Germany, every night providing images of the OH* airglow layer (height: 85–87 km), with a high spatial and temporal resolution (150 m, 2 min). We analysed three years of data for spatially confined small-scale wave structures with a machine learning approach. We derived seasonal variations and deduced that wave breaking is mostly observed in summer.
Stefan Noll, Carsten Schmidt, Patrick Hannawald, Wolfgang Kausch, and Stefan Kimeswenger
Geosci. Model Dev., 18, 4353–4398, https://doi.org/10.5194/gmd-18-4353-2025, https://doi.org/10.5194/gmd-18-4353-2025, 2025
Short summary
Short summary
Non-thermal emission from chemical reactions in the Earth's middle und upper atmosphere strongly contributes to the brightness of the night sky below about 2.3 µm. The new Paranal Airglow Line And Continuum Emission model calculates the emission spectrum and its variability with an unprecedented accuracy. Relying on a large spectroscopic data set from astronomical spectrographs and theoretical molecular/atomic data, this model is valuable for airglow research and astronomical observatories.
René Sedlak, Andreas Welscher, Patrick Hannawald, Sabine Wüst, Rainer Lienhart, and Michael Bittner
Atmos. Meas. Tech., 16, 3141–3153, https://doi.org/10.5194/amt-16-3141-2023, https://doi.org/10.5194/amt-16-3141-2023, 2023
Short summary
Short summary
We show that machine learning can help in classifying images of the OH* airglow, a thin layer in the middle atmosphere (ca. 86 km height) emitting infrared radiation, in an efficient way. By doing this,
dynamicepisodes of strong movement in the OH* airglow caused predominantly by waves can be extracted automatically from large data sets. Within these dynamic episodes, turbulent wave breaking can also be found. We use these observations of turbulence to derive the energy released by waves.
René Sedlak, Patrick Hannawald, Carsten Schmidt, Sabine Wüst, Michael Bittner, and Samo Stanič
Atmos. Meas. Tech., 14, 6821–6833, https://doi.org/10.5194/amt-14-6821-2021, https://doi.org/10.5194/amt-14-6821-2021, 2021
Short summary
Short summary
High-resolution images of the OH* airglow layer (ca. 87 km height) acquired at Otlica Observatory, Slovenia, have been analysed. A statistical analysis of small-scale wave structures with horizontal wavelengths up to 4.5 km suggests strong presence of instability features in the upper mesosphere or lower thermosphere. The dissipated energy of breaking gravity waves is derived from observations of turbulent vortices. It is concluded that dynamical heating plays a vital role in the atmosphere.
Thomas Trickl, Hannes Vogelmann, Michael Bittner, Gerald Nedoluha, Carsten Schmidt, Wolfgang Steinbrecht, and Sabine Wüst
Atmos. Meas. Tech., 18, 7477–7496, https://doi.org/10.5194/amt-18-7477-2025, https://doi.org/10.5194/amt-18-7477-2025, 2025
Short summary
Short summary
A powerful lidar system has been installed at the high-altitude observatory Schneefernerhaus (2575 m) to allow for atmospheric temperature measurements up to more than 80 km within just one hour. The temperature profiles are calibrated by values obtained from chemiluminscence of the hydroxyl radical around 86 km. The temperature profiles are successfully compared with satellite and lidar data.
Sabine Wüst, Jakob Strutz, Patrick Hannawald, Jonas Steffen, Rainer Lienhart, and Michael Bittner
EGUsphere, https://doi.org/10.5194/egusphere-2025-4611, https://doi.org/10.5194/egusphere-2025-4611, 2025
Short summary
Short summary
Since June 2019, an infrared camera has been scanning the nearly entire sky (diameter: 500 km) above DLR Oberpfaffenhofen (48.09° N, 11.28° E), Germany, every night providing images of the OH* airglow layer (height: 85–87 km), with a high spatial and temporal resolution (150 m, 2 min). We analysed three years of data for spatially confined small-scale wave structures with a machine learning approach. We derived seasonal variations and deduced that wave breaking is mostly observed in summer.
Stefan Noll, Carsten Schmidt, Patrick Hannawald, Wolfgang Kausch, and Stefan Kimeswenger
Geosci. Model Dev., 18, 4353–4398, https://doi.org/10.5194/gmd-18-4353-2025, https://doi.org/10.5194/gmd-18-4353-2025, 2025
Short summary
Short summary
Non-thermal emission from chemical reactions in the Earth's middle und upper atmosphere strongly contributes to the brightness of the night sky below about 2.3 µm. The new Paranal Airglow Line And Continuum Emission model calculates the emission spectrum and its variability with an unprecedented accuracy. Relying on a large spectroscopic data set from astronomical spectrographs and theoretical molecular/atomic data, this model is valuable for airglow research and astronomical observatories.
Sabine Wüst, Lisa Küchelbacher, Franziska Trinkl, and Michael Bittner
Atmos. Meas. Tech., 18, 1591–1607, https://doi.org/10.5194/amt-18-1591-2025, https://doi.org/10.5194/amt-18-1591-2025, 2025
Short summary
Short summary
Information on the energy transported by atmospheric gravity waves (GWs) is crucial for improving atmosphere models. Most space-based studies report the potential energy. We use Aeolus wind data to estimate the kinetic energy (density). However, the data quality is a challenge for such analyses, as the accuracy of the data is in the range of typical GW amplitudes. We find a temporal coincidence between enhanced or breaking planetary waves and enhanced gravity wave kinetic energy density.
Stefan Noll, John M. C. Plane, Wuhu Feng, Konstantinos S. Kalogerakis, Wolfgang Kausch, Carsten Schmidt, Michael Bittner, and Stefan Kimeswenger
Atmos. Chem. Phys., 24, 1143–1176, https://doi.org/10.5194/acp-24-1143-2024, https://doi.org/10.5194/acp-24-1143-2024, 2024
Short summary
Short summary
The Earth's nighttime radiation in the range from the near-UV to the near-IR mainly originates between 75 and 105 km and consists of lines of different species, which are important indicators of the chemistry and dynamics at these altitudes. Based on astronomical spectra, we have characterised the structure and variability of a pseudo-continuum of a high number of faint lines and discovered a new emission process in the near-IR. By means of simulations, we identified HO2 as the likely emitter.
Carsten Schmidt, Lisa Küchelbacher, Sabine Wüst, and Michael Bittner
Atmos. Meas. Tech., 16, 4331–4356, https://doi.org/10.5194/amt-16-4331-2023, https://doi.org/10.5194/amt-16-4331-2023, 2023
Short summary
Short summary
Two identical instruments in a parallel setup were used to observe the mesospheric OH airglow for more than 10 years (2009–2020) at 47.42°N, 10.98°E. This allows unique analyses of data quality aspects and their impact on the obtained results. During solar cycle 24 the influence of the sun was strong (∼6 K per 100 sfu). A quasi-2-year oscillation (QBO) of ±1 K is observed mainly during the maximum of the solar cycle. Unlike the stratospheric QBO the variation has a period of or below 24 months.
René Sedlak, Andreas Welscher, Patrick Hannawald, Sabine Wüst, Rainer Lienhart, and Michael Bittner
Atmos. Meas. Tech., 16, 3141–3153, https://doi.org/10.5194/amt-16-3141-2023, https://doi.org/10.5194/amt-16-3141-2023, 2023
Short summary
Short summary
We show that machine learning can help in classifying images of the OH* airglow, a thin layer in the middle atmosphere (ca. 86 km height) emitting infrared radiation, in an efficient way. By doing this,
dynamicepisodes of strong movement in the OH* airglow caused predominantly by waves can be extracted automatically from large data sets. Within these dynamic episodes, turbulent wave breaking can also be found. We use these observations of turbulence to derive the energy released by waves.
Sabine Wüst, Michael Bittner, Patrick J. Espy, W. John R. French, and Frank J. Mulligan
Atmos. Chem. Phys., 23, 1599–1618, https://doi.org/10.5194/acp-23-1599-2023, https://doi.org/10.5194/acp-23-1599-2023, 2023
Short summary
Short summary
Ground-based OH* airglow measurements have been carried out for almost 100 years. Advanced detector technology has greatly simplified the automatic operation of OH* airglow observing instruments and significantly improved the temporal and/or spatial resolution. Studies based on long-term measurements or including a network of instruments are reviewed, especially in the context of deriving gravity wave properties. Scientific and technical challenges for the next few years are described.
René Sedlak, Patrick Hannawald, Carsten Schmidt, Sabine Wüst, Michael Bittner, and Samo Stanič
Atmos. Meas. Tech., 14, 6821–6833, https://doi.org/10.5194/amt-14-6821-2021, https://doi.org/10.5194/amt-14-6821-2021, 2021
Short summary
Short summary
High-resolution images of the OH* airglow layer (ca. 87 km height) acquired at Otlica Observatory, Slovenia, have been analysed. A statistical analysis of small-scale wave structures with horizontal wavelengths up to 4.5 km suggests strong presence of instability features in the upper mesosphere or lower thermosphere. The dissipated energy of breaking gravity waves is derived from observations of turbulent vortices. It is concluded that dynamical heating plays a vital role in the atmosphere.
Cited articles
Adams, G. W., Peterson, A. W., Brosnahan, J. W., and Neuschaefer, J. W.: Radar and optical observations of mesospheric wave activity during the lunar eclipse of 6 July 1982, J. Atmos. Terr. Phys., 50, 11–17, 19–20, https://doi.org/10.1016/0021-9169(88)90003-7, 1988.
Baker, D. J. and Stair Jr., A. T.: Rocket Measurements of the Altitude Distributions of the Hydroxyl Airglow, Physica Scripta, 37, 611–622, 1988.
Bovensmann, H., Burrows, J. P., Buchwitz, M., Frerick, J., Noel, S., and Rozanov, V. V.: SCIAMACHY: Mission Objectives and Measurement Modes, J. Atmos. Sci., 56, 127–150, https://doi.org/10.1175/1520-0469(1999)056<0127:SMOAMM>2.0.CO;2, 1999.
Chu, X., Gardner, C. S., and Franke, S. J.: Nocturnal thermal structure of the mesosphere and lower thermosphere region at Maui, Hawaii (20.7°N), and Starfire Optical Range, New Mexico (35° N), J. Geophys. Res., 110, D09S03, https://doi.org/10.1029/2004JD004891, 2005.
Dunker, T., Hoppe, U., Feng, W., Plane, J. M., and Marsh, D. R.: Mesospheric temperatures and sodium properties measured with the ALOMAR Na lidar compared with WACCM, J. Atmos. Sol.-Terr. Phy., 127, 111–119, https://doi.org/10.1016/j.jastp.2015.01.003, 2015.
Fritts, D. C. and Alexander, M. J.: Gravity wave dynamics and effects in the middle atmosphere, Rev. Geophys., 41, 1003, https://doi.org/10.1029/2001RG000106, 2003.
Fritts, D. C., Wan, K., Werne, J., Lund, T., and Hecht, J. H.: Modeling the implications of Kelvin-Helmholtz instability dynamics for airglow observations, J. Geophys. Res.-Atmos., 119, 8858–8871, https://doi.org/10.1002/2014JD021737, 2014.
Hecht, J. H.: Instability layer and airglow imaging, Rev. Geophys., 42, RG1001, https://doi.org/10.1029/2003RG000131, 2004.
Hecht, J. H., Walterscheid, R. L., Hickey, M. P., Rudy, R. J., and Liu, A. Z.: An observation of a fast external atmospheric acoustic-gravity wave, J. Geophyis. Res., 107, ACL 12-1–ACL 12-12, https://doi.org/10.1029/2001JD001438, 2002.
Hecht, J. H., Wan, K., Gelinas, L. J., Fritts, D., Walterscheid, R., Rudy, R., Liu, A., Franke, S. J., Vargas, F., Pautet, P. D., Taylor, M., and Swenson, G.: The life cycle of instability features measured from the Andes Lidar Observatory over Cerro Pachon on 24 march 2012, J. Geophys. Res.-Atmos., 119, 8872–8898, https://doi.org/10.1002/2014JD021726, 2014.
Meinel, A. B.: OH Emission band in the spectrum of the night sky I, Am. Astr. Soc., 111, p. 555, https://doi.org/10.1086/145296, 1950.
Moreels, G., Clairemidi, J., Faivre, M., Mougin-Sisini, D., Kouahla, M. N., Meriwether, J. W., Lehmacher, G. A., Vidal, E., and Veliz, O.: Stereoscopic imaging of the hydroxyl emissive layer at low latitudes, Planet. Space Sci., 56, 1467–1479, https://doi.org/10.1016/j.pss.2008.04.012, 2008.
Mukherjee, G., Parihar, N., Ghodpage, R., Patil, P., et al.: Studies of the wind filtering effect of gravity waves observed at Allahabad (25.45° N, 81.85° E) in India, Earth Planets Space, 62, 309–318, https://doi.org/10.5047/eps.2009.11.008, 2010.
Mulligan, F. J. and Galligan, J. M.: Mesopause temperatures calculated from the O2(a1Δg) twilight airglow emission recorded at Maynooth (53.2° N, 6.4° W), Ann. Geophys., 13, 558–566, https://doi.org/10.1007/s00585-995-0558-1, 1995.
Nakamura, T., Higashikawa, A., Tsuda, T., and Matsushita, Y.: Seasonal variations of gravity wave structures in OH airglow with a CCD imager at Shigaraki, Earth Planets Space, 51, 897–906, https://doi.org/10.1186/BF03353248, 1999.
Noll, S., Kausch, W., Kimeswenger, S., Unterguggenberger, S., and Jones, A. M.: OH populations and temperatures from simultaneous spectroscopic observations of 25 bands, Atmos. Chem. Phys., 15, 3647–3669, https://doi.org/10.5194/acp-15-3647-2015, 2015.
Pautet, P.-D., Taylor, M. J., W. R. Pendleton, J., Zhao, Y., Yuan, T., Esplin, R., and McLain, D.: Advanced mesospheric temperature mapper for high-latitude airglow studies, Appl. Optics, 53, 5934–5943, https://doi.org/10.1364/AO.53.005934, 2014.
Pilger, C., Schmidt, C., Streicher, F., Wüst, S., and Bittner, M.: Airglow observations of orographic, volcanic and meteorological infrasound signatures, J. Atmos. Sol.-Terr. Phy., 104, 55–66, https://doi.org/10.1016/j.jastp.2013.08.008, 2013.
Roach, F. E. and Gordon, J. L.: The light of the nightsky, Springer Verlag, Berlin–Heidelberg, Germany, https://doi.org/10.1086/142513, 1973.
Rousselot, P., Lidman, C., Cuby, J.-G., Moreels, G., and Monnet, G.: Night-sky spectral atlas of OH emission lines in the near-infrared, Astron. Astrophys., 354, 1134–1150, 2000.
Sato, K.: A statistical study of the structure, saturation and sources of inertio-gravity waves in the lower stratosphere observed with the MU radar, J. Atmos. Terr. Phys., 56, 755–774, https://doi.org/10.1016/0021-9169(94)90131-7, 1994.
Schmidt, C., Höppner, K., and Bittner, M.: A ground-based spectrometer equipped with an InGaAs array for routine observations of OH(3-1) rotational temperatures in the mesopause region, J. Atmos. Sol.-Terr. Phys., 102, 125–139, https://doi.org/10.1016/j.jastp.2013.05.001, 2013.
Shiokawa, K., Katoh, Y., Satoh, M., Ejiri, M., Ogawa, T., Nakamura, T., Tsuda, T., and Wiens, R. H.: Development of Optical Mesosphere Thermosphere Imagers (OMTI), Earth Planets Space, 51, 887–896, https://doi.org/10.1186/BF03353247, 1999.
Smith, A. K.: Global Dynamics of the MLT, Surv. Geophys., 33, 1177–1230, https://doi.org/10.1007/s10712-012-9196-9, 2012.
Smith, S., Baumgardner, J., and Mendillo, M.: Evidence of mesospheric gravity-waves generated by orographic forcing in the troposphere, Geophys. Res. Lett., 36, L08807, https://doi.org/10.1029/2008GL036936, 2009.
Taguchi, M., Ejiri, M., and Tomimatsu, K.: A new all-sky optics for aurora and airglow imaging, National Institute of Polar Research, Tokyo, Japan, Tech. rep., 2004.
Taylor, M. J. and Hapgood, M. A.: On the origin of ripple-type wave structure in the OH nightglow emission, Planet. Space Sci., 38, 1421–1430, https://doi.org/10.1016/0032-0633(90)90117-9, 1990.
Taylor, M. J., Bishop, M. B., and Taylor, V.: All-sky measurements of short period waves iimage in the OI(557.7 nm), Na (589.2 nm) and near infrared OH and O2(0,1) nightglow eemission during the ALOHA-93 campaign, Geophys. Res. Lett., 22, 2833–2836, https://doi.org/10.1029/95GL02946, 1995.
Taylor, M. J., Pendleton Jr., W. R., Gardner, C. S., and States, R. J.: Comparison of terdiurnal tidal oscillations in mesospheric OH rotational temperature and Na lidar temperature measurements at mid-latitudes for fall/spring conditions, Earth Planets Space, 51, 877–885, https://doi.org/10.1186/BF03353246, 1999.
van Rhijn, P. J.: On the brightness of the sky at night and the total amount of starlight, Publications of the Astronomical Laboratory at Groningen, Groningen, the Netherlands, 1921.
von Savigny, C.: Variability of OH(3-1) emission altitude from 2003 to 2011: Long-term stability and universality of the emission rate-altitude relationship, J. Atmos. Sol.-Terr. Phy., 127, 120–128, https://doi.org/10.1016/j.jastp.2015.02.001, 2015.
Yamada, Y., Fukunishi, H., Nakamura, T., and Tsuda, T.: Breaking of small-scale gravity wave and transition to turbulence observed in OH airglow, Geophys. Res. Lett., 28, 2153–2156, https://doi.org/10.1029/2000GL011945, 2001.
Short summary
This paper presents a ground-based, short-wave infrared camera system for measurements of the OH airglow originating in the middle atmosphere. The camera has a high temporal and spatial resolution of 0.5 s and 200 m (at 90 km height), which allows for detailed observations of atmospheric waves and other transient phenomena. Details regarding the instrument, calibration and preprocessing are discussed exemplarily for an event of two superposing gravity waves with associated instability structures.
This paper presents a ground-based, short-wave infrared camera system for measurements of the OH...