Articles | Volume 9, issue 4
https://doi.org/10.5194/amt-9-1653-2016
https://doi.org/10.5194/amt-9-1653-2016
Research article
 | 
13 Apr 2016
Research article |  | 13 Apr 2016

Lidar arc scan uncertainty reduction through scanning geometry optimization

Hui Wang, Rebecca J. Barthelmie, Sara C. Pryor, and Gareth. Brown

Related authors

Errors in radial velocity variance from Doppler wind lidar
H. Wang, R. J. Barthelmie, P. Doubrawa, and S. C. Pryor
Atmos. Meas. Tech., 9, 4123–4139, https://doi.org/10.5194/amt-9-4123-2016,https://doi.org/10.5194/amt-9-4123-2016, 2016
Short summary

Related subject area

Subject: Others (Wind, Precipitation, Temperature, etc.) | Technique: Remote Sensing | Topic: Validation and Intercomparisons
Closing the gap in the tropics: the added value of radio-occultation data for wind field monitoring across the Equator
Julia Danzer, Magdalena Pieler, and Gottfried Kirchengast
Atmos. Meas. Tech., 17, 4979–4995, https://doi.org/10.5194/amt-17-4979-2024,https://doi.org/10.5194/amt-17-4979-2024, 2024
Short summary
Verification of weather-radar-based hail metrics with crowdsourced observations from Switzerland
Jérôme Kopp, Alessandro Hering, Urs Germann, and Olivia Martius
Atmos. Meas. Tech., 17, 4529–4552, https://doi.org/10.5194/amt-17-4529-2024,https://doi.org/10.5194/amt-17-4529-2024, 2024
Short summary
Atmospheric motion vector (AMV) error characterization and bias correction by leveraging independent lidar data: a simulation using an observing system simulation experiment (OSSE) and optical flow AMVs
Hai Nguyen, Derek Posselt, Igor Yanovsky, Longtao Wu, and Svetla Hristova-Veleva
Atmos. Meas. Tech., 17, 3103–3119, https://doi.org/10.5194/amt-17-3103-2024,https://doi.org/10.5194/amt-17-3103-2024, 2024
Short summary
Rotary-wing drone-induced flow – comparison of simulations with lidar measurements
Liqin Jin, Mauro Ghirardelli, Jakob Mann, Mikael Sjöholm, Stephan Thomas Kral, and Joachim Reuder
Atmos. Meas. Tech., 17, 2721–2737, https://doi.org/10.5194/amt-17-2721-2024,https://doi.org/10.5194/amt-17-2721-2024, 2024
Short summary
Improving the Estimate of Higher Order Moments from Lidar Observations Near the Top of the Convective Boundary Layer
Tessa Rosenberger, David D. Turner, Thijs Heus, Girish N. Raghunathan, Timothy J. Wagner, and Julia Simonson
EGUsphere, https://doi.org/10.5194/egusphere-2024-868,https://doi.org/10.5194/egusphere-2024-868, 2024
Short summary

Cited articles

Ahn, S. and Fessler, J. A.: Standard Errors of Mean, Variance, and Standard Deviation Estimators, available at: http://ai.eecs.umich.edu/~fessler/papers/files/tr/stderr.pdf (last access: 1 October 2015), University of Michigan, Communication and Signal Processing Lab, Department of EECS, Ann Arbor, Michigan, 2003.
Aitken, M. L., Banta, R. M., Pichugina, Y. L., and Lundquist, J. K.: Quantifying wind turbine wake characteristics from scanning remote sensor data, J. Atmos. Ocean. Tech., 31, 765–787, https://doi.org/10.1175/JTECH-D-13-00104.1, 2014.
Banakh, V. A., Smalikho, I. N., Köpp, F., and Werner, C.: Representativeness of wind measurements with a cw Doppler lidar inthe atmospheric boundary layer, Appl. Optics, 34, 2055–2067, https://doi.org/10.1364/AO.34.002055, 1995.
Banta, R. M., Pichugina, Y. L., Kelley, N. D., Jonkman, B., and Brewer, W. A.: Doppler lidar measurements of the great plains low-level jet: applications to wind energy, IOP C. Ser. Earth Env., 1, 12–20, 2008.
Banta, R. M., Pichugina, Y. L., Kelley, N. D., Hardesty, R. M., and Brewer, W. A.: Wind energy meteorology: insight into wind properties in the turbine–rotor layer of the atmosphere from high-resolution Doppler lidar, B. Am. Meteorol. Soc., 94, 883–902, https://doi.org/10.1175/BAMS-D-11-00057.1, 2013.