Articles | Volume 9, issue 4
https://doi.org/10.5194/amt-9-1859-2016
https://doi.org/10.5194/amt-9-1859-2016
Research article
 | Highlight paper
 | 
28 Apr 2016
Research article | Highlight paper |  | 28 Apr 2016

Bayesian statistical ionospheric tomography improved by incorporating ionosonde measurements

Johannes Norberg, Ilkka I. Virtanen, Lassi Roininen, Juha Vierinen, Mikko Orispää, Kirsti Kauristie, and Markku S. Lehtinen

Related authors

Sodankylä ionospheric tomography data set 2003–2014
Johannes Norberg, Lassi Roininen, Antti Kero, Tero Raita, Thomas Ulich, Markku Markkanen, Liisa Juusola, and Kirsti Kauristie
Geosci. Instrum. Method. Data Syst., 5, 263–270, https://doi.org/10.5194/gi-5-263-2016,https://doi.org/10.5194/gi-5-263-2016, 2016
Short summary
Statistical framework for estimating GNSS bias
Juha Vierinen, Anthea J. Coster, William C. Rideout, Philip J. Erickson, and Johannes Norberg
Atmos. Meas. Tech., 9, 1303–1312, https://doi.org/10.5194/amt-9-1303-2016,https://doi.org/10.5194/amt-9-1303-2016, 2016
Short summary

Related subject area

Subject: Others (Wind, Precipitation, Temperature, etc.) | Technique: Remote Sensing | Topic: Validation and Intercomparisons
Assessment of operational non-time-critical Sentinel-6A Michael Freilich radio occultation data: insights into tropospheric GNSS signal cut-off strategies and processor improvements
Saverio Paolella, Axel Von Engeln, Sebastiano Padovan, Riccardo Notarpietro, Christian Marquardt, Francisco Sancho, Veronica Rivas Boscan, Nicolas Morew, and Francisco Martin Alemany
Atmos. Meas. Tech., 18, 2825–2846, https://doi.org/10.5194/amt-18-2825-2025,https://doi.org/10.5194/amt-18-2825-2025, 2025
Short summary
The potential of observing atmospheric rivers with Global Navigation Satellite System (GNSS) radio occultation
Bahareh Rahimi and Ulrich Foelsche
Atmos. Meas. Tech., 18, 2481–2507, https://doi.org/10.5194/amt-18-2481-2025,https://doi.org/10.5194/amt-18-2481-2025, 2025
Short summary
Atmospheric stability from numerical weather prediction models and microwave radiometer observations for onshore and offshore wind energy applications
Domenico Cimini, Rémi Gandoin, Stephanie Fiedler, Claudia Acquistapace, Andrea Balotti, Sabrina Gentile, Edoardo Geraldi, Christine Knist, Pauline Martinet, Saverio T. Nilo, Giandomenico Pace, Bernhard Pospichal, and Filomena Romano
Atmos. Meas. Tech., 18, 2041–2067, https://doi.org/10.5194/amt-18-2041-2025,https://doi.org/10.5194/amt-18-2041-2025, 2025
Short summary
Solar background radiation temperature calibration of a pure rotational Raman lidar
Vasura Jayaweera, Robert J. Sica, Giovanni Martucci, and Alexander Haefele
Atmos. Meas. Tech., 18, 1461–1469, https://doi.org/10.5194/amt-18-1461-2025,https://doi.org/10.5194/amt-18-1461-2025, 2025
Short summary
Exploring commercial Global Navigation Satellite System (GNSS) radio occultation (RO) products for planetary boundary layer studies in the Arctic
Manisha Ganeshan, Dong L. Wu, Joseph A. Santanello, Jie Gong, Chi Ao, Panagiotis Vergados, and Kevin J. Nelson
Atmos. Meas. Tech., 18, 1389–1403, https://doi.org/10.5194/amt-18-1389-2025,https://doi.org/10.5194/amt-18-1389-2025, 2025
Short summary

Cited articles

Andreeva, E. S.: Radio tomographic reconstruction of ionization dip in the plasma near the Earth, J. Exp. Theor. Phys. Lett., 52, 142–148, 1990.
Austen, J. R., Franke, S. J., and Liu, C. H.: Ionospheric imaging using computerized tomography, Radio Sci., 3, 299–307, 1988.
Bilitza, D. and Reinisch, B. W.: International Reference Ionosphere 2007: improvements and a new parameters, Adv. Space Res., 42, 599–609, 2008.
Breit, G. and Tuve, M. A.: A Test of the Existence of the Conducting Layer, Phys. Rev., 28, 554–575, 1926.
Bust, G. S. and Mitchell, C. N.: History, current state, and future directions of ionospheric imaging, Rev. Geophys., 46, RG1003, https://doi.org/10.1029/2006RG000212, 2008.
Download
Short summary
We validate 2-D ionospheric tomography reconstructions against EISCAT incoherent scatter radar measurements. The method is based on Bayesian statistical inversion. We employ ionosonde measurements for the choice of the prior distribution parameters and use a sparse matrix approximation for the computations. This results in a computationally efficient tomography algorithm with clear probabilistic interpretation. We find that ionosonde measurements improve the reconstruction significantly.
Share