Articles | Volume 9, issue 6
Atmos. Meas. Tech., 9, 2615–2631, 2016
https://doi.org/10.5194/amt-9-2615-2016
Atmos. Meas. Tech., 9, 2615–2631, 2016
https://doi.org/10.5194/amt-9-2615-2016

Research article 21 Jun 2016

Research article | 21 Jun 2016

An automated baseline correction protocol for infrared spectra of atmospheric aerosols collected on polytetrafluoroethylene (Teflon) filters

Adele Kuzmiakova et al.

Related authors

Fragment ion-functional group relationships in organic aerosols using aerosol mass spectrometry and mid-infrared spectroscopy
Amir Yazdani, Nikunj Dudani, Satoshi Takahama, Amelie Bertrand, André S. H. Prévôt, Imad El Haddad, and Ann M. Dillner
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2021-186,https://doi.org/10.5194/amt-2021-186, 2021
Preprint under review for AMT
Short summary
Estimating mean molecular weight, carbon number, and OM∕OC with mid-infrared spectroscopy in organic particulate matter samples from a monitoring network
Amir Yazdani, Ann M. Dillner, and Satoshi Takahama
Atmos. Meas. Tech., 14, 4805–4827, https://doi.org/10.5194/amt-14-4805-2021,https://doi.org/10.5194/amt-14-4805-2021, 2021
Short summary
Characterization of primary and aged wood burning and coal combustion organic aerosols in an environmental chamber and its implications for atmospheric aerosols
Amir Yazdani, Nikunj Dudani, Satoshi Takahama, Amelie Bertrand, André S. H. Prévôt, Imad El Haddad, and Ann M. Dillner
Atmos. Chem. Phys., 21, 10273–10293, https://doi.org/10.5194/acp-21-10273-2021,https://doi.org/10.5194/acp-21-10273-2021, 2021
Short summary
Molecular scale description of interfacial mass transfer in phase separated aqueous secondary organic aerosol
Mária Lbadaoui-Darvas, Satoshi Takahama, and Athanasios Nenes
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2021-488,https://doi.org/10.5194/acp-2021-488, 2021
Revised manuscript accepted for ACP
Short summary
Quantifying organic matter and functional groups in particulate matter filter samples from the southeastern United States – Part 2: Spatiotemporal trends
Alexandra J. Boris, Satoshi Takahama, Andrew T. Weakley, Bruno M. Debus, Stephanie L. Shaw, Eric S. Edgerton, Taekyu Joo, Nga L. Ng, and Ann M. Dillner
Atmos. Meas. Tech., 14, 4355–4374, https://doi.org/10.5194/amt-14-4355-2021,https://doi.org/10.5194/amt-14-4355-2021, 2021
Short summary

Related subject area

Subject: Aerosols | Technique: In Situ Measurement | Topic: Data Processing and Information Retrieval
Data imputation in in situ-measured particle size distributions by means of neural networks
Pak Lun Fung, Martha Arbayani Zaidan, Ola Surakhi, Sasu Tarkoma, Tuukka Petäjä, and Tareq Hussein
Atmos. Meas. Tech., 14, 5535–5554, https://doi.org/10.5194/amt-14-5535-2021,https://doi.org/10.5194/amt-14-5535-2021, 2021
Short summary
Analysis of mobile monitoring data from the microAeth® MA200 for measuring changes in black carbon on the roadside in Augsburg
Xiansheng Liu, Hadiatullah Hadiatullah, Xun Zhang, L. Drew Hill, Andrew H. A. White, Jürgen Schnelle-Kreis, Jan Bendl, Gert Jakobi, Brigitte Schloter-Hai, and Ralf Zimmermann
Atmos. Meas. Tech., 14, 5139–5151, https://doi.org/10.5194/amt-14-5139-2021,https://doi.org/10.5194/amt-14-5139-2021, 2021
Short summary
New correction method for the scattering coefficient measurements of a three-wavelength nephelometer
Jie Qiu, Wangshu Tan, Gang Zhao, Yingli Yu, and Chunsheng Zhao
Atmos. Meas. Tech., 14, 4879–4891, https://doi.org/10.5194/amt-14-4879-2021,https://doi.org/10.5194/amt-14-4879-2021, 2021
Short summary
Estimating mean molecular weight, carbon number, and OM∕OC with mid-infrared spectroscopy in organic particulate matter samples from a monitoring network
Amir Yazdani, Ann M. Dillner, and Satoshi Takahama
Atmos. Meas. Tech., 14, 4805–4827, https://doi.org/10.5194/amt-14-4805-2021,https://doi.org/10.5194/amt-14-4805-2021, 2021
Short summary
Modeled source apportionment of black carbon particles coated with a light-scattering shell
Aki Virkkula
Atmos. Meas. Tech., 14, 3707–3719, https://doi.org/10.5194/amt-14-3707-2021,https://doi.org/10.5194/amt-14-3707-2021, 2021
Short summary

Cited articles

Bacsik, Z., Mink, J., and Keresztury, G.: FTIR spectroscopy of the atmosphere. I. Principles and methods, Appl. Spectrosc. Rev., 39, 295–363, https://doi.org/10.1081/asr-200030192, 2004.
Bahadur, R., Uplinger, T., Russell, L. M., Sive, B. C., Cliff, S. S., Millet, D. B., Goldstein, A., and Bates, T. S.: Phenol Groups in Northeastern US Submicrometer Aerosol Particles Produced from Seawater Sources, Environ. Sci. Technol., 44, 2542–2548, https://doi.org/10.1021/es9032277, 2010.
Cantoni, E. and Hastie, T.: Degrees-of-freedom tests for smoothing splines, Biometrika, 89, 251–263, https://doi.org/10.1093/biomet/89.2.251, 2002.
Corrigan, A. L., Russell, L. M., Takahama, S., Äijälä, M., Ehn, M., Junninen, H., Rinne, J., Petäjä, T., Kulmala, M., Vogel, A. L., Hoffmann, T., Ebben, C. J., Geiger, F. M., Chhabra, P., Seinfeld, J. H., Worsnop, D. R., Song, W., Auld, J., and Williams, J.: Biogenic and biomass burning organic aerosol in a boreal forest at Hyytiälä, Finland, during HUMPPA-COPEC 2010, Atmos. Chem. Phys., 13, 12233–12256, https://doi.org/10.5194/acp-13-12233-2013, 2013.
Download
Short summary
We describe a new method for removing Teflon substrate interference from ambient aerosol infrared spectra such that functional group quantification and spectral clustering (for source classification) can be applied. We demonstrate that this technique produces similar results to a more labor-intensive method used in many field campaigns over the past several years, but is simpler and better constrained by physical criteria that we impose, leading to the possibility of widespread adoption.