Articles | Volume 9, issue 11
Atmos. Meas. Tech., 9, 5637–5653, 2016
https://doi.org/10.5194/amt-9-5637-2016
Atmos. Meas. Tech., 9, 5637–5653, 2016
https://doi.org/10.5194/amt-9-5637-2016
Research article
25 Nov 2016
Research article | 25 Nov 2016

A technique for rapid source apportionment applied to ambient organic aerosol measurements from a thermal desorption aerosol gas chromatograph (TAG)

Yaping Zhang et al.

Related authors

Organic and inorganic decomposition products from the thermal desorption of atmospheric particles
Brent J. Williams, Yaping Zhang, Xiaochen Zuo, Raul E. Martinez, Michael J. Walker, Nathan M. Kreisberg, Allen H. Goldstein, Kenneth S. Docherty, and Jose L. Jimenez
Atmos. Meas. Tech., 9, 1569–1586, https://doi.org/10.5194/amt-9-1569-2016,https://doi.org/10.5194/amt-9-1569-2016, 2016
Short summary
Measurements of the aerosol chemical composition and mixing state in the Po Valley using multiple spectroscopic techniques
S. Decesari, J. Allan, C. Plass-Duelmer, B. J. Williams, M. Paglione, M. C. Facchini, C. O'Dowd, R. M. Harrison, J. K. Gietl, H. Coe, L. Giulianelli, G. P. Gobbi, C. Lanconelli, C. Carbone, D. Worsnop, A. T. Lambe, A. T. Ahern, F. Moretti, E. Tagliavini, T. Elste, S. Gilge, Y. Zhang, and M. Dall'Osto
Atmos. Chem. Phys., 14, 12109–12132, https://doi.org/10.5194/acp-14-12109-2014,https://doi.org/10.5194/acp-14-12109-2014, 2014
Short summary

Related subject area

Subject: Aerosols | Technique: In Situ Measurement | Topic: Data Processing and Information Retrieval
Quantification of primary and secondary organic aerosol sources by combined factor analysis of extractive electrospray ionisation and aerosol mass spectrometer measurements (EESI-TOF and AMS)
Yandong Tong, Lu Qi, Giulia Stefenelli, Dongyu Simon Wang, Francesco Canonaco, Urs Baltensperger, André Stephan Henry Prévôt, and Jay Gates Slowik
Atmos. Meas. Tech., 15, 7265–7291, https://doi.org/10.5194/amt-15-7265-2022,https://doi.org/10.5194/amt-15-7265-2022, 2022
Short summary
A new method for calculating average visibility from the relationship between extinction coefficient and visibility
Zefeng Zhang, Hengnan Guo, Hanqing Kang, Jing Wang, Junlin An, Xingna Yu, Jingjing Lv, and Bin Zhu
Atmos. Meas. Tech., 15, 7259–7264, https://doi.org/10.5194/amt-15-7259-2022,https://doi.org/10.5194/amt-15-7259-2022, 2022
Short summary
In situ particle sampling relationships to surface and turbulent fluxes using large eddy simulations with Lagrangian particles
Hyungwon John Park, Jeffrey S. Reid, Livia S. Freire, Christopher Jackson, and David H. Richter
Atmos. Meas. Tech., 15, 7171–7194, https://doi.org/10.5194/amt-15-7171-2022,https://doi.org/10.5194/amt-15-7171-2022, 2022
Short summary
The effect of the averaging period for PMF analysis of aerosol mass spectrometer measurements during offline applications
Christina Vasilakopoulou, Iasonas Stavroulas, Nikolaos Mihalopoulos, and Spyros N. Pandis
Atmos. Meas. Tech., 15, 6419–6431, https://doi.org/10.5194/amt-15-6419-2022,https://doi.org/10.5194/amt-15-6419-2022, 2022
Short summary
Calibrating networks of low-cost air quality sensors
Priyanka deSouza, Ralph Kahn, Tehya Stockman, William Obermann, Ben Crawford, An Wang, James Crooks, Jing Li, and Patrick Kinney
Atmos. Meas. Tech., 15, 6309–6328, https://doi.org/10.5194/amt-15-6309-2022,https://doi.org/10.5194/amt-15-6309-2022, 2022
Short summary

Cited articles

Allan, J. D., Jimenez, J. L., Williams, P. I., Alfarra, M. R., Bower, K. N., Jayne, J. T., Coe, H., and Worsnop, D. R.: Quantitative sampling using an Aerodyne aerosol mass spectrometer – 1. Techniques of data interpretation and error analysis, J. Geophys. Res.-Atmos., 108, 4090, https://doi.org/10.1029/2002jd002358, 2003.
Ahlm, L., Shakya, K. M., Russell, L. M., Schroder, J. C., Wong, J. P. S., S. J., Hayden, K. L., Liggio, J., Wentzell, J. J. B., Wiebe, H. A., Mihele, C., Leaitch, W. R., and Macdonald, A. M.: Temperature-dependent accumulation mode particle and cloud nuclei concentrations from biogenic sources during WACS 2010, Atmos. Chem. Phys., 13, 3393–3407, https://doi.org/10.5194/acp-13-3393-2013, 2013.
Canagaratna, M. R., Jayne, J. T., Jimenez, J. L., Allan, J. D., Alfarra, M. R., Zhang, Q., Onasch, T. B., Drewnick, F., Coe, H., Middlebrook, A., Delia, A., Williams, L. R., Trimborn, A. M., Northway, M. J., DeCarlo, P. F., Kolb, C. E., Davidovits, P., and Worsnop, D. R.: Chemical and microphysical characterization of ambient aerosols with the aerodyne aerosol mass spectrometer, Mass Spectrom. Rev., 26, 185–222, https://doi.org/10.1002/mas.20115, 2007.
Chueinta, W., Hopke, P. K., and Paatero, P.: Investigation of sources of atmospheric aerosol at urban and suburban residential areas in Thailand by positive matrix factorization, Atmos. Environ., 34, 3319–3329, 2000.
Docherty, K. S., Stone, E. A., Ulbrich, I. M., DeCarlo, P. F., Snyder, D. C., Schauer, J. J., Peltier, R. E., Weber, R. J., Murphy, S. M., Seinfeld, J. H., Grover, B. D., Eatough, D. J., and Jimenez, J. L.: Apportionment of Primary and Secondary Organic Aerosols in Southern California during the 2005 Study of Organic Aerosols in Riverside (SOAR-1), Environ. Sci. Technol., 42, 7655–7662, https://doi.org/10.1021/es8008166, 2008.
Download
Short summary
The binning method provides an alternate way to process GC–MS data in a very fast manner. It only takes a very small portion of time (days versus years) compared to the traditional GC–MS data analysis method (peak identification and integration). Furthermore, the binning method can also be applied to any data set from a measurement (mass spectrometry, spectroscopy, etc.) with additional separations (volatility, polarity, size, etc.).