Articles | Volume 9, issue 12
https://doi.org/10.5194/amt-9-5955-2016
https://doi.org/10.5194/amt-9-5955-2016
Research article
 | 
12 Dec 2016
Research article |  | 12 Dec 2016

High-resolution observations of small-scale gravity waves and turbulence features in the OH airglow layer

René Sedlak, Patrick Hannawald, Carsten Schmidt, Sabine Wüst, and Michael Bittner

Related authors

Analysis of 2D airglow imager data with respect to dynamics using machine learning
René Sedlak, Andreas Welscher, Patrick Hannawald, Sabine Wüst, Rainer Lienhart, and Michael Bittner
Atmos. Meas. Tech., 16, 3141–3153, https://doi.org/10.5194/amt-16-3141-2023,https://doi.org/10.5194/amt-16-3141-2023, 2023
Short summary
Gravity wave instability structures and turbulence from more than 1.5 years of OH* airglow imager observations in Slovenia
René Sedlak, Patrick Hannawald, Carsten Schmidt, Sabine Wüst, Michael Bittner, and Samo Stanič
Atmos. Meas. Tech., 14, 6821–6833, https://doi.org/10.5194/amt-14-6821-2021,https://doi.org/10.5194/amt-14-6821-2021, 2021
Short summary

Cited articles

Adams, G. W., Peterson, A. W., Brosnahan, J. W., and Neuschaefer, J. W.: Radar and optical observations of mesospheric wave activity during the lunar eclipse of 6 July 1982, J. Atmos. Terr. Phys., 50, 11–20, 1988.
Andreassen, Ø., Wasberg, C. E., Fritts, D. C., and Isler, J. R.: Gravity wave breaking in two and three dimensions 1. Model description and comparison of two-dimensional evolutions, J. Geophys. Res., 99, 8095–8108, 1994.
Baker, D. J. and Stair, A. T.: Rocket Measurements of the Altitude Distributions of the Hydroxyl Airglow, Phys. Scripta, 37, 611–622, 1988.
Bates, D. R. and Nicolet, M.: Atmospheric Hydrogen, Publ. Astron. Soc. Pac., 62, 106–110, 1950.
Download
Short summary
In this paper a SWIR airglow imager is presented. It is especially designed for the observation of small-scale gravity waves and turbulence features in the OH airglow layer with a high spatio-temporal resolution of up to 17 m (at mesopause heights) and 2.5 to 2.8 s. Two case studies show small-scale wave structures with horizontal wavelengths of approximately 550 m as well as vortex formation and decomposition of wave fronts, both indicating the onset of turbulence.
Share