Articles | Volume 9, issue 3
Atmos. Meas. Tech., 9, 929–938, 2016
https://doi.org/10.5194/amt-9-929-2016
Atmos. Meas. Tech., 9, 929–938, 2016
https://doi.org/10.5194/amt-9-929-2016
Research article
07 Mar 2016
Research article | 07 Mar 2016

Controlled weather balloon ascents and descents for atmospheric research and climate monitoring

Andreas Kräuchi et al.

Related authors

The SPARC Water Vapor Assessment II: assessment of satellite measurements of upper tropospheric humidity
William G. Read, Gabriele Stiller, Stefan Lossow, Michael Kiefer, Farahnaz Khosrawi, Dale Hurst, Holger Vömel, Karen Rosenlof, Bianca M. Dinelli, Piera Raspollini, Gerald E. Nedoluha, John C. Gille, Yasuko Kasai, Patrick Eriksson, Christopher E. Sioris, Kaley A. Walker, Katja Weigel, John P. Burrows, and Alexei Rozanov
Atmos. Meas. Tech., 15, 3377–3400, https://doi.org/10.5194/amt-15-3377-2022,https://doi.org/10.5194/amt-15-3377-2022, 2022
Short summary
UAS Chromatograph for Atmospheric Trace Species (UCATS) – a versatile instrument for trace gas measurements on airborne platforms
Eric J. Hintsa, Fred L. Moore, Dale F. Hurst, Geoff S. Dutton, Bradley D. Hall, J. David Nance, Ben R. Miller, Stephen A. Montzka, Laura P. Wolton, Audra McClure-Begley, James W. Elkins, Emrys G. Hall, Allen F. Jordan, Andrew W. Rollins, Troy D. Thornberry, Laurel A. Watts, Chelsea R. Thompson, Jeff Peischl, Ilann Bourgeois, Thomas B. Ryerson, Bruce C. Daube, Yenny Gonzalez Ramos, Roisin Commane, Gregory W. Santoni, Jasna V. Pittman, Steven C. Wofsy, Eric Kort, Glenn S. Diskin, and T. Paul Bui
Atmos. Meas. Tech., 14, 6795–6819, https://doi.org/10.5194/amt-14-6795-2021,https://doi.org/10.5194/amt-14-6795-2021, 2021
Short summary
Investigation and amelioration of long-term instrumental drifts in water vapor and nitrous oxide measurements from the Aura Microwave Limb Sounder (MLS) and their implications for studies of variability and trends
Nathaniel J. Livesey, William G. Read, Lucien Froidevaux, Alyn Lambert, Michelle L. Santee, Michael J. Schwartz, Luis F. Millán, Robert F. Jarnot, Paul A. Wagner, Dale F. Hurst, Kaley A. Walker, Patrick E. Sheese, and Gerald E. Nedoluha
Atmos. Chem. Phys., 21, 15409–15430, https://doi.org/10.5194/acp-21-15409-2021,https://doi.org/10.5194/acp-21-15409-2021, 2021
Short summary
Validation of pure rotational Raman temperature data from the Raman Lidar for Meteorological Observations (RALMO) at Payerne
Giovanni Martucci, Francisco Navas-Guzmán, Ludovic Renaud, Gonzague Romanens, S. Mahagammulla Gamage, Maxime Hervo, Pierre Jeannet, and Alexander Haefele
Atmos. Meas. Tech., 14, 1333–1353, https://doi.org/10.5194/amt-14-1333-2021,https://doi.org/10.5194/amt-14-1333-2021, 2021
Short summary
Validation of aerosol backscatter profiles from Raman lidar and ceilometer using balloon-borne measurements
Simone Brunamonti, Giovanni Martucci, Gonzague Romanens, Yann Poltera, Frank G. Wienhold, Maxime Hervo, Alexander Haefele, and Francisco Navas-Guzmán
Atmos. Chem. Phys., 21, 2267–2285, https://doi.org/10.5194/acp-21-2267-2021,https://doi.org/10.5194/acp-21-2267-2021, 2021
Short summary

Related subject area

Subject: Others (Wind, Precipitation, Temperature, etc.) | Technique: In Situ Measurement | Topic: Instruments and Platforms
Infrasound measurement system for real-time in situ tornado measurements
Brandon C. White, Brian R. Elbing, and Imraan A. Faruque
Atmos. Meas. Tech., 15, 2923–2938, https://doi.org/10.5194/amt-15-2923-2022,https://doi.org/10.5194/amt-15-2923-2022, 2022
Short summary
Quantifying the coastal urban surface layer structure using distributed temperature sensing in Helsinki, Finland
Sasu Karttunen, Ewan O'Connor, Olli Peltola, and Leena Järvi
Atmos. Meas. Tech., 15, 2417–2432, https://doi.org/10.5194/amt-15-2417-2022,https://doi.org/10.5194/amt-15-2417-2022, 2022
Short summary
On the quality of RS41 radiosonde descent data
Bruce Ingleby, Martin Motl, Graeme Marlton, David Edwards, Michael Sommer, Christoph von Rohden, Holger Vömel, and Hannu Jauhiainen
Atmos. Meas. Tech., 15, 165–183, https://doi.org/10.5194/amt-15-165-2022,https://doi.org/10.5194/amt-15-165-2022, 2022
Short summary
Idealized simulation study of the relationship of disdrometer sampling statistics with the precision of precipitation rate measurement
Karlie N. Rees and Timothy J. Garrett
Atmos. Meas. Tech., 14, 7681–7691, https://doi.org/10.5194/amt-14-7681-2021,https://doi.org/10.5194/amt-14-7681-2021, 2021
Short summary
Use of thermal signal for the investigation of near-surface turbulence
Matthias Zeeman
Atmos. Meas. Tech., 14, 7475–7493, https://doi.org/10.5194/amt-14-7475-2021,https://doi.org/10.5194/amt-14-7475-2021, 2021
Short summary

Cited articles

Forster, P. M. F. and Shine, K. P.: Assessing the climate impact of trends in stratospheric water vapour, Geophys. Res. Lett., 29, 1086, https://doi.org/10.1029/2001GL013909, 2002.
GCOS-112: GCOS Reference Upper-Air Network (GRUAN): Justification, requirements, siting and instrumentation options, Technical Document 112, WMO TD No. 1379, 25 pp., https://www.wmo.int/pages/prog/gcos/Publications/gcos-112.pdf, 2007.
Hergesell, H.: Ballon-Aufstiege über dem freien Meere zur Erforschung der Temperatur und der Feuchtigkeitsverhältnisse sowie der Luftströmung bis zu sehr grossen Höhen der Atmosphäre, Beitr. Phys. frei. Atmos., 1, 200–204, 1906.
Hermite, G.: Exploration des hautes régions de l'atmosphère à l'aide de ballons non montés, pourvus d'enregistreurs automatiques, Compt. Rend. Séances Acad. Sci., Paris, 115, 862–864, 1892.
Download
Short summary
In situ upper-air measurements are often made with instruments attached to weather balloons launched at the surface and lifted into the stratosphere. It has been demonstrated that ascending weather balloons can perturb the air measured by very sensitive humidity and temperature sensors trailing behind them. The use of controlled balloon descent for such measurements has therefore been investigated and is described here. We present two different methods and show advantages and disadvantages.