Articles | Volume 10, issue 1
https://doi.org/10.5194/amt-10-209-2017
https://doi.org/10.5194/amt-10-209-2017
Research article
 | 
17 Jan 2017
Research article |  | 17 Jan 2017

Retrieval of nitric oxide in the mesosphere from SCIAMACHY nominal limb spectra

Stefan Bender, Miriam Sinnhuber, Martin Langowski, and John P. Burrows

Related authors

Thermospheric nitric oxide NO during solar minimum modulated by O/O2 ratio and thermospheric transport and mixing
Miriam Sinnhuber, Christina Arras, Stefan Bender, Bernd Funke, Hanli Liu, Daniel R. Marsh, Thomas Reddmann, Eugene Rozanov, Timofei Sukhodolov, Monika E. Szelag, and Jan Maik Wissing
EGUsphere, https://doi.org/10.5194/egusphere-2024-2256,https://doi.org/10.5194/egusphere-2024-2256, 2024
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Validation of SSUSI-derived auroral electron densities: comparisons to EISCAT data
Stefan Bender, Patrick J. Espy, and Larry J. Paxton
Ann. Geophys., 39, 899–910, https://doi.org/10.5194/angeo-39-899-2021,https://doi.org/10.5194/angeo-39-899-2021, 2021
Short summary
Overview: Estimating and reporting uncertainties in remotely sensed atmospheric composition and temperature
Thomas von Clarmann, Douglas A. Degenstein, Nathaniel J. Livesey, Stefan Bender, Amy Braverman, André Butz, Steven Compernolle, Robert Damadeo, Seth Dueck, Patrick Eriksson, Bernd Funke, Margaret C. Johnson, Yasuko Kasai, Arno Keppens, Anne Kleinert, Natalya A. Kramarova, Alexandra Laeng, Bavo Langerock, Vivienne H. Payne, Alexei Rozanov, Tomohiro O. Sato, Matthias Schneider, Patrick Sheese, Viktoria Sofieva, Gabriele P. Stiller, Christian von Savigny, and Daniel Zawada
Atmos. Meas. Tech., 13, 4393–4436, https://doi.org/10.5194/amt-13-4393-2020,https://doi.org/10.5194/amt-13-4393-2020, 2020
Short summary
Mesospheric nitric oxide model from SCIAMACHY data
Stefan Bender, Miriam Sinnhuber, Patrick J. Espy, and John P. Burrows
Atmos. Chem. Phys., 19, 2135–2147, https://doi.org/10.5194/acp-19-2135-2019,https://doi.org/10.5194/acp-19-2135-2019, 2019
Short summary
Retrieval of O2(1Σ) and O2(1Δ) volume emission rates in the mesosphere and lower thermosphere using SCIAMACHY MLT limb scans
Amirmahdi Zarboo, Stefan Bender, John P. Burrows, Johannes Orphal, and Miriam Sinnhuber
Atmos. Meas. Tech., 11, 473–487, https://doi.org/10.5194/amt-11-473-2018,https://doi.org/10.5194/amt-11-473-2018, 2018
Short summary

Related subject area

Subject: Gases | Technique: Remote Sensing | Topic: Data Processing and Information Retrieval
Retrieving the atmospheric concentrations of carbon dioxide and methane from the European Copernicus CO2M satellite mission using artificial neural networks
Maximilian Reuter, Michael Hilker, Stefan Noël, Antonio Di Noia, Michael Weimer, Oliver Schneising, Michael Buchwitz, Heinrich Bovensmann, John P. Burrows, Hartmut Bösch, and Ruediger Lang
Atmos. Meas. Tech., 18, 241–264, https://doi.org/10.5194/amt-18-241-2025,https://doi.org/10.5194/amt-18-241-2025, 2025
Short summary
The differences between remote sensing and in situ air pollutant measurements over the Canadian oil sands
Xiaoyi Zhao, Vitali Fioletov, Debora Griffin, Chris McLinden, Ralf Staebler, Cristian Mihele, Kevin Strawbridge, Jonathan Davies, Ihab Abboud, Sum Chi Lee, Alexander Cede, Martin Tiefengraber, and Robert Swap
Atmos. Meas. Tech., 17, 6889–6912, https://doi.org/10.5194/amt-17-6889-2024,https://doi.org/10.5194/amt-17-6889-2024, 2024
Short summary
NitroNet – a machine learning model for the prediction of tropospheric NO2 profiles from TROPOMI observations
Leon Kuhn, Steffen Beirle, Sergey Osipov, Andrea Pozzer, and Thomas Wagner
Atmos. Meas. Tech., 17, 6485–6516, https://doi.org/10.5194/amt-17-6485-2024,https://doi.org/10.5194/amt-17-6485-2024, 2024
Short summary
Improved convective cloud differential (CCD) tropospheric ozone from S5P-TROPOMI satellite data using local cloud fields
Swathi Maratt Satheesan, Kai-Uwe Eichmann, John P. Burrows, Mark Weber, Ryan Stauffer, Anne M. Thompson, and Debra Kollonige
Atmos. Meas. Tech., 17, 6459–6484, https://doi.org/10.5194/amt-17-6459-2024,https://doi.org/10.5194/amt-17-6459-2024, 2024
Short summary
Atmospheric propane (C3H8) column retrievals from ground-based FTIR observations in Xianghe, China
Minqiang Zhou, Pucai Wang, Bart Dils, Bavo Langerock, Geoff Toon, Christian Hermans, Weidong Nan, Qun Cheng, and Martine De Mazière
Atmos. Meas. Tech., 17, 6385–6396, https://doi.org/10.5194/amt-17-6385-2024,https://doi.org/10.5194/amt-17-6385-2024, 2024
Short summary

Cited articles

Barth, C. A., Mankoff, K. D., Bailey, S. M., and Solomon, S. C.: Global observations of nitric oxide in the thermosphere, J. Geophys. Res., 108, 1027, https://doi.org/10.1029/2002JA009458, 2003.
Bender, S., Sinnhuber, M., Burrows, J. P., Langowski, M., Funke, B., and López-Puertas, M.: Retrieval of nitric oxide in the mesosphere and lower thermosphere from SCIAMACHY limb spectra, Atmos. Meas. Tech., 6, 2521–2531, https://doi.org/10.5194/amt-6-2521-2013, 2013.
Bender, S., Sinnhuber, M., von Clarmann, T., Stiller, G., Funke, B., López-Puertas, M., Urban, J., Pérot, K., Walker, K. A., and Burrows, J. P.: Comparison of nitric oxide measurements in the mesosphere and lower thermosphere from ACE-FTS, MIPAS, SCIAMACHY, and SMR, Atmos. Meas. Tech., 8, 4171–4195, https://doi.org/10.5194/amt-8-4171-2015, 2015.
Bermejo-Pantaleón, D., Funke, B., López-Puertas, M., García-Comas, M., Stiller, G. P., von Clarmann, T., Linden, A., Grabowski, U., Höpfner, M., Kiefer, M., Glatthor, N., Kellmann, S., and Lu, G.: Global observations of thermospheric temperature and nitric oxide from MIPAS spectra at 5.3 µm, J. Geophys. Res., 116, A10313, https://doi.org/10.1029/2011JA016752, 2011.
Bovensmann, H., Burrows, J. P., Buchwitz, M., Frerick, J., Noël, S., Rozanov, V. V., Chance, K. V., and Goede, A. P. H.: SCIAMACHY: Mission Objectives and Measurement Modes, J. Atmos. Sci., 56, 127–150, https://doi.org/10.1175/1520-0469(1999)056<0127:SMOAMM>2.0.CO;2, 1999.
Download
Short summary
We present the retrieval of NO number densities from 60 km to 85 km from measurements of SCIAMACHY/Envisat in its nominal limb mode (0–91 km). We derive the densities from the NO gamma bands (230–300 nm). Using prior input reduces the incorrect attribution of NO from the lower thermosphere. The SCIAMACHY nominal limb scans provide almost 10 years of daily NO data in this altitude range, a unique data record to constrain NO in the mesosphere for testing and validating chemistry climate models.