Articles | Volume 10, issue 7
https://doi.org/10.5194/amt-10-2557-2017
https://doi.org/10.5194/amt-10-2557-2017
Research article
 | 
20 Jul 2017
Research article |  | 20 Jul 2017

A variational technique to estimate snowfall rate from coincident radar, snowflake, and fall-speed observations

Steven J. Cooper, Norman B. Wood, and Tristan S. L'Ecuyer

Related authors

Using snowflake surface-area-to-volume ratio to model and interpret snowfall triple-frequency radar signatures
Mathias Gergely, Steven J. Cooper, and Timothy J. Garrett
Atmos. Chem. Phys., 17, 12011–12030, https://doi.org/10.5194/acp-17-12011-2017,https://doi.org/10.5194/acp-17-12011-2017, 2017
Short summary
Simulating the effects of mid- to upper-tropospheric clouds on microwave emissions in EC-Earth using COSP
M. S. Johnston, G. Holl, J. Hocking, S. J. Cooper, and D. Chen
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amtd-8-11753-2015,https://doi.org/10.5194/amtd-8-11753-2015, 2015
Preprint withdrawn

Related subject area

Subject: Others (Wind, Precipitation, Temperature, etc.) | Technique: Remote Sensing | Topic: Validation and Intercomparisons
Description and validation of the Japanese algorithm for radiative flux and heating rate products with all four EarthCARE instruments: pre-launch test with A-Train
Akira Yamauchi, Kentaroh Suzuki, Eiji Oikawa, Miho Sekiguchi, Takashi M. Nagao, and Haruma Ishida
Atmos. Meas. Tech., 17, 6751–6767, https://doi.org/10.5194/amt-17-6751-2024,https://doi.org/10.5194/amt-17-6751-2024, 2024
Short summary
Improving the estimate of higher-order moments from lidar observations near the top of the convective boundary layer
Tessa E. Rosenberger, David D. Turner, Thijs Heus, Girish N. Raghunathan, Timothy J. Wagner, and Julia Simonson
Atmos. Meas. Tech., 17, 6595–6602, https://doi.org/10.5194/amt-17-6595-2024,https://doi.org/10.5194/amt-17-6595-2024, 2024
Short summary
Closing the gap in the tropics: the added value of radio-occultation data for wind field monitoring across the Equator
Julia Danzer, Magdalena Pieler, and Gottfried Kirchengast
Atmos. Meas. Tech., 17, 4979–4995, https://doi.org/10.5194/amt-17-4979-2024,https://doi.org/10.5194/amt-17-4979-2024, 2024
Short summary
Cluster Analysis of Vertical Polarimetric Radio Occultation Profiles and Corresponding Liquid and Ice Water Paths From GPM Microwave Data
Jonas Ernő Katona, Manuel de la Torre Juárez, Terence L. Kubar, F. Joseph Turk, Kuo-Nung Wang, and Ramon Padullés
EGUsphere, https://doi.org/10.5194/egusphere-2024-1278,https://doi.org/10.5194/egusphere-2024-1278, 2024
Short summary
Verification of weather-radar-based hail metrics with crowdsourced observations from Switzerland
Jérôme Kopp, Alessandro Hering, Urs Germann, and Olivia Martius
Atmos. Meas. Tech., 17, 4529–4552, https://doi.org/10.5194/amt-17-4529-2024,https://doi.org/10.5194/amt-17-4529-2024, 2024
Short summary

Cited articles

Auer Jr., A. H. and Veal, D. L.: The dimensions of ice crystals in natural clouds, J. Atmos. Sci., 27, 919–926, 1970.
Bharadwaj, N., Lindenmaier, A., Widener, K. B., Johnson, K. L., and Venkatesh, V.: Ka-band ARM zenith profiling radar (KAZR) network for climate study, 36th Conf. on Radar Meteorology, Breckenridge, CO, Amer. Meteor., 2013.
Black, R. F.: Precipitation at Barrow, Alaska, greater than recorded, EOS Trans. AGU, 35, 203–207, 1954.
Brown, R., Derksen, C., and Wang, L.: A multi-data set analysis of variability and change in Arctic spring snow cover extent, 1967–2008, J. Geophys. Res., 115, D16111, https://doi.org/10.1029/2010JD013975, 2010.
Brown, R. D.: Northern Hemisphere snow cover variability and change, 1915–1997, J. Climate, 13, 2339–2355, 2000.
Download
Short summary
Estimates of snowfall rate as derived from radar observations can suffer large uncertainties due to great natural variability in snowflake microphysical properties. We used in situ observations of particle size, shape, and fall speed to refine radar-based estimates of snowfall for five snow events at the ARM Barrow Climate Research Facility. Estimated snowfall amounts agreed well with nearby snow gauge observations and demonstrated significant sensitivity to both particle shape and fall speed.