Articles | Volume 11, issue 7
Research article
20 Jul 2018
Research article |  | 20 Jul 2018

Evaluating two methods of estimating error variances using simulated data sets with known errors

Therese Rieckh and Richard Anthes

Related authors

Introducing ELSA v2.0: an isochronal model for ice-sheet layer tracing
Therese Rieckh, Andreas Born, Alexander Robinson, Robert Law, and Gerrit Gülle
EGUsphere,,, 2024
Short summary
Estimating observation and model error variances using multiple data sets
Richard Anthes and Therese Rieckh
Atmos. Meas. Tech., 11, 4239–4260,,, 2018
Short summary
Evaluating tropospheric humidity from GPS radio occultation, radiosonde, and AIRS from high-resolution time series
Therese Rieckh, Richard Anthes, William Randel, Shu-Peng Ho, and Ulrich Foelsche
Atmos. Meas. Tech., 11, 3091–3109,,, 2018
Short summary
Reducing representativeness and sampling errors in radio occultation–radiosonde comparisons
Shay Gilpin, Therese Rieckh, and Richard Anthes
Atmos. Meas. Tech., 11, 2567–2582,,, 2018
Short summary
Tropospheric dry layers in the tropical western Pacific: comparisons of GPS radio occultation with multiple data sets
Therese Rieckh, Richard Anthes, William Randel, Shu-Peng Ho, and Ulrich Foelsche
Atmos. Meas. Tech., 10, 1093–1110,,, 2017
Short summary

Related subject area

Subject: Others (Wind, Precipitation, Temperature, etc.) | Technique: Remote Sensing | Topic: Validation and Intercomparisons
GPROF V7 and beyond: assessment of current and potential future versions of the GPROF passive microwave precipitation retrievals against ground radar measurements over the continental US and the Pacific Ocean
Simon Pfreundschuh, Clément Guilloteau, Paula J. Brown, Christian D. Kummerow, and Patrick Eriksson
Atmos. Meas. Tech., 17, 515–538,,, 2024
Short summary
Assessing sampling and retrieval errors of GPROF precipitation estimates over the Netherlands
Linda Bogerd, Hidde Leijnse, Aart Overeem, and Remko Uijlenhoet
Atmos. Meas. Tech., 17, 247–259,,, 2024
Short summary
Comparisons and quality control of wind observations in a mountainous city using wind profile radar and the Aeolus satellite
Hua Lu, Min Xie, Wei Zhao, Bojun Liu, Tijian Wang, and Bingliang Zhuang
Atmos. Meas. Tech., 17, 167–179,,, 2024
Short summary
On the use of routine airborne observations for evaluation and monitoring of satellite observations of thermodynamic profiles
Timothy J. Wagner, Thomas August, Tim Hultberg, and Ralph A. Petersen
Atmos. Meas. Tech., 17, 1–14,,, 2024
Short summary
Daily satellite-based sunshine duration estimates over Brazil: validation and intercomparison
Maria Lívia L. M. Gava, Simone M. S. Costa, and Anthony C. S. Porfírio
Atmos. Meas. Tech., 16, 5429–5441,,, 2023
Short summary

Cited articles

Anthes, R. and Rieckh, T.: Estimating observation and model error variances using multiple data sets, Atmos. Meas. Tech., 11, 4239–4260,, 2018. a, b, c, d, e, f, g, h, i, j, k
Braun, J., Rocken, C., and Ware, R.: Validation of line-of-sight water vapor measurements with GPS, Radio Sci., 36, 459–472, 2001. a, b, c
Chen, S.-Y., Huang, C.-Y., Kuo, Y.-H., and Sokolovskiy, S.: Observational Error Estimation of FORMOSAT-3/COSMIC GPS Radio Occultation Data, Mon. Weather Rev., 139, 853–865,, 2011. a, b
Collard, A. D. and Healy, S. B.: The combined impact of future space-based atmospheric sounding instruments on numerical weather-prediction analysis fields: A simulation study, Q. J. Roy. Meteor. Soc., 129, 2741–2760,, 2003. a, b
Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P., Kobayashi, S., Andrae, U., Balmaseda, M. A., Balsamo, G., Bauer, P., Bechtold, P., Beljaars, A. C. M., van de Berg, L., Bidlot, J., Bormann, N., Delsol, C., Dragani, R., Fuentes, M., Geer, A. J., Haimberger, L., Healy, S. B., Hersbach, H., Hólm, E. V., Isaksen, L., Kållberg, P., Köhler, M., Matricardi, M., McNally, A. P., Monge-Sanz, B. M., Morcrette, J.-J., Park, B.-K., Peubey, C., de Rosnay, P., Tavolato, C., Thépaut, J.-N., and Vitart, F.: The ERA-Interim reanalysis: configuration and performance of the data assimilation system, Q. J. Roy. Meteor. Soc., 137, 553–597,, 2011. a
Short summary
We compare the two-cornered hat (2CH) and three-cornered hat (3CH) method for estimating the error variances of two or more independent data sets using simulated data with various error correlations and biases. We assess the accuracy of the 3CH and 2CH estimates and examine the sensitivity of the estimated error variances to the degree of error correlation between the data sets as well as sample size. The 3CH method is less sensitive to these factors and hence more accurate.