Articles | Volume 11, issue 7
https://doi.org/10.5194/amt-11-4309-2018
https://doi.org/10.5194/amt-11-4309-2018
Research article
 | 
20 Jul 2018
Research article |  | 20 Jul 2018

Evaluating two methods of estimating error variances using simulated data sets with known errors

Therese Rieckh and Richard Anthes

Related authors

Review Article: Antarctica’s internal architecture: Towards a radiostratigraphically-informed age–depth model of the Antarctic ice sheets
Robert G. Bingham, Julien A. Bodart, Marie G. P. Cavitte, Ailsa Chung, Rebecca J. Sanderson, Johannes C. R. Sutter, Olaf Eisen, Nanna B. Karlsson, Joseph A. MacGregor, Neil Ross, Duncan A. Young, David W. Ashmore, Andreas Born, Winnie Chu, Xiangbin Cui, Reinhard Drews, Steven Franke, Vikram Goel, John W. Goodge, A. Clara J. Henry, Antoine Hermant, Benjamin H. Hills, Nicholas Holschuh, Michelle R. Koutnik, Gwendolyn J.-M. C. Leysinger Vieli, Emma J. Mackie, Elisa Mantelli, Carlos Martín, Felix S. L. Ng, Falk M. Oraschewski, Felipe Napoleoni, Frédéric Parrenin, Sergey V. Popov, Therese Rieckh, Rebecca Schlegel, Dustin M. Schroeder, Martin J. Siegert, Xueyuan Tang, Thomas O. Teisberg, Kate Winter, Shuai Yan, Harry Davis, Christine F. Dow, Tyler J. Fudge, Tom A. Jordan, Bernd Kulessa, Kenichi Matsuoka, Clara J. Nyqvist, Maryam Rahnemoonfar, Matthew R. Siegfried, Shivangini Singh, Verjan Višnjević, Rodrigo Zamora, and Alexandra Zuhr
EGUsphere, https://doi.org/10.5194/egusphere-2024-2593,https://doi.org/10.5194/egusphere-2024-2593, 2024
Short summary
Design and performance of ELSA v2.0: an isochronal model for ice-sheet layer tracing
Therese Rieckh, Andreas Born, Alexander Robinson, Robert Law, and Gerrit Gülle
Geosci. Model Dev., 17, 6987–7000, https://doi.org/10.5194/gmd-17-6987-2024,https://doi.org/10.5194/gmd-17-6987-2024, 2024
Short summary
Estimating observation and model error variances using multiple data sets
Richard Anthes and Therese Rieckh
Atmos. Meas. Tech., 11, 4239–4260, https://doi.org/10.5194/amt-11-4239-2018,https://doi.org/10.5194/amt-11-4239-2018, 2018
Short summary
Evaluating tropospheric humidity from GPS radio occultation, radiosonde, and AIRS from high-resolution time series
Therese Rieckh, Richard Anthes, William Randel, Shu-Peng Ho, and Ulrich Foelsche
Atmos. Meas. Tech., 11, 3091–3109, https://doi.org/10.5194/amt-11-3091-2018,https://doi.org/10.5194/amt-11-3091-2018, 2018
Short summary
Reducing representativeness and sampling errors in radio occultation–radiosonde comparisons
Shay Gilpin, Therese Rieckh, and Richard Anthes
Atmos. Meas. Tech., 11, 2567–2582, https://doi.org/10.5194/amt-11-2567-2018,https://doi.org/10.5194/amt-11-2567-2018, 2018
Short summary

Related subject area

Subject: Others (Wind, Precipitation, Temperature, etc.) | Technique: Remote Sensing | Topic: Validation and Intercomparisons
Solar background radiation temperature calibration of a pure rotational Raman lidar
Vasura Jayaweera, Robert J. Sica, Giovanni Martucci, and Alexander Haefele
Atmos. Meas. Tech., 18, 1461–1469, https://doi.org/10.5194/amt-18-1461-2025,https://doi.org/10.5194/amt-18-1461-2025, 2025
Short summary
Exploring commercial Global Navigation Satellite System (GNSS) radio occultation (RO) products for planetary boundary layer studies in the Arctic
Manisha Ganeshan, Dong L. Wu, Joseph A. Santanello, Jie Gong, Chi Ao, Panagiotis Vergados, and Kevin J. Nelson
Atmos. Meas. Tech., 18, 1389–1403, https://doi.org/10.5194/amt-18-1389-2025,https://doi.org/10.5194/amt-18-1389-2025, 2025
Short summary
Research on atmospheric temperature fine measurements from the near surface to 60 km altitude based on an integrated lidar system
Zhangjun Wang, Tiantian Guo, Xianxin Li, Chao Chen, Dong Liu, Luoyuan Qu, Hui Li, and Xiufen Wang
Atmos. Meas. Tech., 18, 1405–1414, https://doi.org/10.5194/amt-18-1405-2025,https://doi.org/10.5194/amt-18-1405-2025, 2025
Short summary
Testing ground-based observations of wave activity in the (lower and upper) atmosphere as possible (complementary) indicators of streamer events
Michal Kozubek, Lisa Kuchelbacher, Jaroslav Chum, Tereza Sindelarova, Franziska Trinkl, and Katerina Podolska
Atmos. Meas. Tech., 18, 1373–1388, https://doi.org/10.5194/amt-18-1373-2025,https://doi.org/10.5194/amt-18-1373-2025, 2025
Short summary
Quality assessment of YUNYAO radio occultation data in the neutral atmosphere
Xiaoze Xu, Wei Han, Jincheng Wang, Zhiqiu Gao, Fenghui Li, Yan Cheng, and Naifeng Fu
Atmos. Meas. Tech., 18, 1339–1353, https://doi.org/10.5194/amt-18-1339-2025,https://doi.org/10.5194/amt-18-1339-2025, 2025
Short summary

Cited articles

Anthes, R. and Rieckh, T.: Estimating observation and model error variances using multiple data sets, Atmos. Meas. Tech., 11, 4239–4260, https://doi.org/10.5194/amt-11-4239-2018, 2018. a, b, c, d, e, f, g, h, i, j, k
Braun, J., Rocken, C., and Ware, R.: Validation of line-of-sight water vapor measurements with GPS, Radio Sci., 36, 459–472, 2001. a, b, c
Chen, S.-Y., Huang, C.-Y., Kuo, Y.-H., and Sokolovskiy, S.: Observational Error Estimation of FORMOSAT-3/COSMIC GPS Radio Occultation Data, Mon. Weather Rev., 139, 853–865, https://doi.org/10.1175/2010MWR3260.1, 2011. a, b
Collard, A. D. and Healy, S. B.: The combined impact of future space-based atmospheric sounding instruments on numerical weather-prediction analysis fields: A simulation study, Q. J. Roy. Meteor. Soc., 129, 2741–2760, https://doi.org/10.1256/qj.02.124, 2003. a, b
Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P., Kobayashi, S., Andrae, U., Balmaseda, M. A., Balsamo, G., Bauer, P., Bechtold, P., Beljaars, A. C. M., van de Berg, L., Bidlot, J., Bormann, N., Delsol, C., Dragani, R., Fuentes, M., Geer, A. J., Haimberger, L., Healy, S. B., Hersbach, H., Hólm, E. V., Isaksen, L., Kållberg, P., Köhler, M., Matricardi, M., McNally, A. P., Monge-Sanz, B. M., Morcrette, J.-J., Park, B.-K., Peubey, C., de Rosnay, P., Tavolato, C., Thépaut, J.-N., and Vitart, F.: The ERA-Interim reanalysis: configuration and performance of the data assimilation system, Q. J. Roy. Meteor. Soc., 137, 553–597, https://doi.org/10.1002/qj.828, 2011. a
Download
Short summary
We compare the two-cornered hat (2CH) and three-cornered hat (3CH) method for estimating the error variances of two or more independent data sets using simulated data with various error correlations and biases. We assess the accuracy of the 3CH and 2CH estimates and examine the sensitivity of the estimated error variances to the degree of error correlation between the data sets as well as sample size. The 3CH method is less sensitive to these factors and hence more accurate.
Share