Articles | Volume 11, issue 9
https://doi.org/10.5194/amt-11-5223-2018
https://doi.org/10.5194/amt-11-5223-2018
Research article
 | 
18 Sep 2018
Research article |  | 18 Sep 2018

Enhancing the consistency of spaceborne and ground-based radar comparisons by using beam blockage fraction as a quality filter

Irene Crisologo, Robert A. Warren, Kai Mühlbauer, and Maik Heistermann

Related authors

Using ground radar overlaps to verify the retrieval of calibration bias estimates from spaceborne platforms
Irene Crisologo and Maik Heistermann
Atmos. Meas. Tech., 13, 645–659, https://doi.org/10.5194/amt-13-645-2020,https://doi.org/10.5194/amt-13-645-2020, 2020
Short summary

Related subject area

Subject: Others (Wind, Precipitation, Temperature, etc.) | Technique: Remote Sensing | Topic: Validation and Intercomparisons
Solar background radiation temperature calibration of a pure rotational Raman lidar
Vasura Jayaweera, Robert J. Sica, Giovanni Martucci, and Alexander Haefele
Atmos. Meas. Tech., 18, 1461–1469, https://doi.org/10.5194/amt-18-1461-2025,https://doi.org/10.5194/amt-18-1461-2025, 2025
Short summary
Exploring commercial Global Navigation Satellite System (GNSS) radio occultation (RO) products for planetary boundary layer studies in the Arctic
Manisha Ganeshan, Dong L. Wu, Joseph A. Santanello, Jie Gong, Chi Ao, Panagiotis Vergados, and Kevin J. Nelson
Atmos. Meas. Tech., 18, 1389–1403, https://doi.org/10.5194/amt-18-1389-2025,https://doi.org/10.5194/amt-18-1389-2025, 2025
Short summary
Research on atmospheric temperature fine measurements from the near surface to 60 km altitude based on an integrated lidar system
Zhangjun Wang, Tiantian Guo, Xianxin Li, Chao Chen, Dong Liu, Luoyuan Qu, Hui Li, and Xiufen Wang
Atmos. Meas. Tech., 18, 1405–1414, https://doi.org/10.5194/amt-18-1405-2025,https://doi.org/10.5194/amt-18-1405-2025, 2025
Short summary
Testing ground-based observations of wave activity in the (lower and upper) atmosphere as possible (complementary) indicators of streamer events
Michal Kozubek, Lisa Kuchelbacher, Jaroslav Chum, Tereza Sindelarova, Franziska Trinkl, and Katerina Podolska
Atmos. Meas. Tech., 18, 1373–1388, https://doi.org/10.5194/amt-18-1373-2025,https://doi.org/10.5194/amt-18-1373-2025, 2025
Short summary
Quality assessment of YUNYAO radio occultation data in the neutral atmosphere
Xiaoze Xu, Wei Han, Jincheng Wang, Zhiqiu Gao, Fenghui Li, Yan Cheng, and Naifeng Fu
Atmos. Meas. Tech., 18, 1339–1353, https://doi.org/10.5194/amt-18-1339-2025,https://doi.org/10.5194/amt-18-1339-2025, 2025
Short summary

Cited articles

Abon, C. C., Kneis, D., Crisologo, I., Bronstert, A., David, C. P. C., and Heistermann, M.: Evaluating the potential of radar-based rainfall estimates for streamflow and flood simulations in the Philippines, Geomat. Nat. Haz. Risk, 7, 1390–1405, https://doi.org/10.1080/19475705.2015.1058862, 2016. a
Amitai, E., Llort, X., and Sempere-Torres, D.: Comparison of TRMM radar rainfall estimates with NOAA next-generation QPE, J. Meteorol. Soc. Jpn., 87, 109–118, https://doi.org/10.2151/jmsj.87A.109, 2009. a
Anagnostou, E. N., Morales, C. A., and Dinku, T.: The use of TRMM precipitation radar observations in determining ground radar calibration biases, J. Atmos. Ocean Tech., 18, 616–628, 2001. a, b, c, d
Austin, P. M.: Relation between Measured Radar Reflectivity and Surface Rainfall, Mon. Weather Rev., 115, 1053–1070, https://doi.org/10.1175/1520-0493(1987)115<1053:RBMRRA>2.0.CO;2, 1987. a
Baldini, L., Chandrasekar, V., and Moisseev, D.: Microwave radar signatures of precipitation from S band to Ka band: application to GPM mission, Eur. J. Remote Sens., 45, 75–88, https://doi.org/10.5721/EuJRS20124508, 2012. a
Download
Short summary
The calibration of ground-based weather radar (GR) can be improved a posteriori by comparing observed GR reflectivity to well-established spaceborne radar platforms (SR), such as TRMM or GPM. Our study shows that the consistency between GR and SR reflectivity measurements can be enhanced by considering the quality of GR data from areas where signals may have been blocked due to the surrounding terrain, and provides an open-source toolset to carry out corresponding analyses.
Share