Articles | Volume 11, issue 9
https://doi.org/10.5194/amt-11-5223-2018
https://doi.org/10.5194/amt-11-5223-2018
Research article
 | 
18 Sep 2018
Research article |  | 18 Sep 2018

Enhancing the consistency of spaceborne and ground-based radar comparisons by using beam blockage fraction as a quality filter

Irene Crisologo, Robert A. Warren, Kai Mühlbauer, and Maik Heistermann

Related authors

Using ground radar overlaps to verify the retrieval of calibration bias estimates from spaceborne platforms
Irene Crisologo and Maik Heistermann
Atmos. Meas. Tech., 13, 645–659, https://doi.org/10.5194/amt-13-645-2020,https://doi.org/10.5194/amt-13-645-2020, 2020
Short summary

Related subject area

Subject: Others (Wind, Precipitation, Temperature, etc.) | Technique: Remote Sensing | Topic: Validation and Intercomparisons
Atmospheric motion vector (AMV) error characterization and bias correction by leveraging independent lidar data: a simulation using an observing system simulation experiment (OSSE) and optical flow AMVs
Hai Nguyen, Derek Posselt, Igor Yanovsky, Longtao Wu, and Svetla Hristova-Veleva
Atmos. Meas. Tech., 17, 3103–3119, https://doi.org/10.5194/amt-17-3103-2024,https://doi.org/10.5194/amt-17-3103-2024, 2024
Short summary
Rotary-wing drone-induced flow – comparison of simulations with lidar measurements
Liqin Jin, Mauro Ghirardelli, Jakob Mann, Mikael Sjöholm, Stephan Thomas Kral, and Joachim Reuder
Atmos. Meas. Tech., 17, 2721–2737, https://doi.org/10.5194/amt-17-2721-2024,https://doi.org/10.5194/amt-17-2721-2024, 2024
Short summary
Application of Doppler sodar in short-term forecasting of PM10 concentration in the air in Krakow (Poland)
Ewa Agnieszka Krajny, Leszek Ośródka, and Marek Jan Wojtylak
Atmos. Meas. Tech., 17, 2451–2464, https://doi.org/10.5194/amt-17-2451-2024,https://doi.org/10.5194/amt-17-2451-2024, 2024
Short summary
Radiative closure tests of collocated hyperspectral microwave and infrared radiometers
Lei Liu, Natalia Bliankinshtein, Yi Huang, John R. Gyakum, Philip M. Gabriel, Shiqi Xu, and Mengistu Wolde
Atmos. Meas. Tech., 17, 2219–2233, https://doi.org/10.5194/amt-17-2219-2024,https://doi.org/10.5194/amt-17-2219-2024, 2024
Short summary
Effects of clouds and aerosols on downwelling surface solar irradiance nowcasting and short-term forecasting
Kyriakoula Papachristopoulou, Ilias Fountoulakis, Alkiviadis F. Bais, Basil E. Psiloglou, Nikolaos Papadimitriou, Ioannis-Panagiotis Raptis, Andreas Kazantzidis, Charalampos Kontoes, Maria Hatzaki, and Stelios Kazadzis
Atmos. Meas. Tech., 17, 1851–1877, https://doi.org/10.5194/amt-17-1851-2024,https://doi.org/10.5194/amt-17-1851-2024, 2024
Short summary

Cited articles

Abon, C. C., Kneis, D., Crisologo, I., Bronstert, A., David, C. P. C., and Heistermann, M.: Evaluating the potential of radar-based rainfall estimates for streamflow and flood simulations in the Philippines, Geomat. Nat. Haz. Risk, 7, 1390–1405, https://doi.org/10.1080/19475705.2015.1058862, 2016. a
Amitai, E., Llort, X., and Sempere-Torres, D.: Comparison of TRMM radar rainfall estimates with NOAA next-generation QPE, J. Meteorol. Soc. Jpn., 87, 109–118, https://doi.org/10.2151/jmsj.87A.109, 2009. a
Anagnostou, E. N., Morales, C. A., and Dinku, T.: The use of TRMM precipitation radar observations in determining ground radar calibration biases, J. Atmos. Ocean Tech., 18, 616–628, 2001. a, b, c, d
Austin, P. M.: Relation between Measured Radar Reflectivity and Surface Rainfall, Mon. Weather Rev., 115, 1053–1070, https://doi.org/10.1175/1520-0493(1987)115<1053:RBMRRA>2.0.CO;2, 1987. a
Baldini, L., Chandrasekar, V., and Moisseev, D.: Microwave radar signatures of precipitation from S band to Ka band: application to GPM mission, Eur. J. Remote Sens., 45, 75–88, https://doi.org/10.5721/EuJRS20124508, 2012. a
Download
Short summary
The calibration of ground-based weather radar (GR) can be improved a posteriori by comparing observed GR reflectivity to well-established spaceborne radar platforms (SR), such as TRMM or GPM. Our study shows that the consistency between GR and SR reflectivity measurements can be enhanced by considering the quality of GR data from areas where signals may have been blocked due to the surrounding terrain, and provides an open-source toolset to carry out corresponding analyses.