Articles | Volume 13, issue 4
https://doi.org/10.5194/amt-13-1693-2020
© Author(s) 2020. This work is distributed under the Creative Commons Attribution 4.0 License.
Evaluation and calibration of a low-cost particle sensor in ambient conditions using machine-learning methods
Related authors
Cited articles
Bergstra, J. and Bengio, Y.: Random Search for Hyper-Parameter Optimization,
J. Mach. Learn. Res., 13, 281–305, 2012.
CDNova Instrument Ltd.: SHARP Cost Estimate, Calgary, Canada, 2017.
Charlson, R. J., Schwartz, S. E., Hales, J. M., Cess, R. D., Coakley, J. A.,
Hansen, J. E., and Hofmann, D. J.: Climate Forcing by Anthropogenic Aerosols,
Science, 255, 423–430, https://doi.org/10.1126/science.255.5043.423, 1992.
Chen, T. and Guestrin, C.: XGBoost: A Scalable Tree Boosting System, in:
Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining – KDD '16, 785–794, ACM Press, San Francisco,
California, USA, 2016.
Chong, C.-Y. and Kumar, S. P.: Sensor networks: Evolution, opportunities,
and challenges, Proc. IEEE, 91, 1247–1256,
https://doi.org/10.1109/JPROC.2003.814918, 2003.