Articles | Volume 13, issue 4
https://doi.org/10.5194/amt-13-1693-2020
https://doi.org/10.5194/amt-13-1693-2020
Research article
 | 
07 Apr 2020
Research article |  | 07 Apr 2020

Evaluation and calibration of a low-cost particle sensor in ambient conditions using machine-learning methods

Minxing Si, Ying Xiong, Shan Du, and Ke Du

Related authors

A minimum curvature algorithm for tomographic reconstruction of atmospheric chemicals based on optical remote sensing
Sheng Li and Ke Du
Atmos. Meas. Tech., 14, 7355–7368, https://doi.org/10.5194/amt-14-7355-2021,https://doi.org/10.5194/amt-14-7355-2021, 2021
Short summary

Cited articles

Bergstra, J. and Bengio, Y.: Random Search for Hyper-Parameter Optimization, J. Mach. Learn. Res., 13, 281–305, 2012. 
CDNova Instrument Ltd.: SHARP Cost Estimate, Calgary, Canada, 2017. 
Charlson, R. J., Schwartz, S. E., Hales, J. M., Cess, R. D., Coakley, J. A., Hansen, J. E., and Hofmann, D. J.: Climate Forcing by Anthropogenic Aerosols, Science, 255, 423–430, https://doi.org/10.1126/science.255.5043.423, 1992. 
Chen, T. and Guestrin, C.: XGBoost: A Scalable Tree Boosting System, in: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining – KDD '16, 785–794, ACM Press, San Francisco, California, USA, 2016. 
Chong, C.-Y. and Kumar, S. P.: Sensor networks: Evolution, opportunities, and challenges, Proc. IEEE, 91, 1247–1256, https://doi.org/10.1109/JPROC.2003.814918, 2003. 
Download
Short summary
The study evaluated the performance of a low-cost PM sensor in ambient conditions and calibrated its readings using simple linear regression (SLR), multiple linear regression (MLR), and two more powerful machine-learning algorithms with random search techniques for the best model architectures. The two machine-learning algorithms are XGBoost and a feedforward neural network (NN).
Share