Articles | Volume 13, issue 4
Atmos. Meas. Tech., 13, 1693–1707, 2020
https://doi.org/10.5194/amt-13-1693-2020
Atmos. Meas. Tech., 13, 1693–1707, 2020
https://doi.org/10.5194/amt-13-1693-2020

Research article 07 Apr 2020

Research article | 07 Apr 2020

Evaluation and calibration of a low-cost particle sensor in ambient conditions using machine-learning methods

Minxing Si et al.

Related authors

A minimum curvature algorithm for tomographic reconstruction of atmospheric chemicals based on optical remote sensing
Sheng Li and Ke Du
Atmos. Meas. Tech., 14, 7355–7368, https://doi.org/10.5194/amt-14-7355-2021,https://doi.org/10.5194/amt-14-7355-2021, 2021
Short summary
Characterization of nighttime formation of particulate organic nitrates based on high-resolution aerosol mass spectrometry in an urban atmosphere in China
Kuangyou Yu, Qiao Zhu, Ke Du, and Xiao-Feng Huang
Atmos. Chem. Phys., 19, 5235–5249, https://doi.org/10.5194/acp-19-5235-2019,https://doi.org/10.5194/acp-19-5235-2019, 2019
Short summary
Quantification of atmospheric visibility with dual digital cameras during daytime and nighttime
K. Du, K. Wang, P. Shi, and Y. Wang
Atmos. Meas. Tech., 6, 2121–2130, https://doi.org/10.5194/amt-6-2121-2013,https://doi.org/10.5194/amt-6-2121-2013, 2013

Related subject area

Subject: Aerosols | Technique: In Situ Measurement | Topic: Validation and Intercomparisons
On the use of reference mass spectra for reducing uncertainty in source apportionment of solid-fuel burning in ambient organic aerosol
Chunshui Lin, Darius Ceburnis, Anna Trubetskaya, Wei Xu, William Smith, Stig Hellebust, John Wenger, Colin O'Dowd, and Jurgita Ovadnevaite
Atmos. Meas. Tech., 14, 6905–6916, https://doi.org/10.5194/amt-14-6905-2021,https://doi.org/10.5194/amt-14-6905-2021, 2021
Short summary
Estimates of mass absorption cross sections of black carbon for filter-based absorption photometers in the Arctic
Sho Ohata, Tatsuhiro Mori, Yutaka Kondo, Sangeeta Sharma, Antti Hyvärinen, Elisabeth Andrews, Peter Tunved, Eija Asmi, John Backman, Henri Servomaa, Daniel Veber, Konstantinos Eleftheriadis, Stergios Vratolis, Radovan Krejci, Paul Zieger, Makoto Koike, Yugo Kanaya, Atsushi Yoshida, Nobuhiro Moteki, Yongjing Zhao, Yutaka Tobo, Junji Matsushita, and Naga Oshima
Atmos. Meas. Tech., 14, 6723–6748, https://doi.org/10.5194/amt-14-6723-2021,https://doi.org/10.5194/amt-14-6723-2021, 2021
Short summary
Effects of different correction algorithms on absorption coefficient – a comparison of three optical absorption photometers at a boreal forest site
Krista Luoma, Aki Virkkula, Pasi Aalto, Katrianne Lehtipalo, Tuukka Petäjä, and Markku Kulmala
Atmos. Meas. Tech., 14, 6419–6441, https://doi.org/10.5194/amt-14-6419-2021,https://doi.org/10.5194/amt-14-6419-2021, 2021
Short summary
Determination of the multiple-scattering correction factor and its cross-sensitivity to scattering and wavelength dependence for different AE33 Aethalometer filter tapes: a multi-instrumental approach
Jesús Yus-Díez, Vera Bernardoni, Griša Močnik, Andrés Alastuey, Davide Ciniglia, Matic Ivančič, Xavier Querol, Noemí Perez, Cristina Reche, Martin Rigler, Roberta Vecchi, Sara Valentini, and Marco Pandolfi
Atmos. Meas. Tech., 14, 6335–6355, https://doi.org/10.5194/amt-14-6335-2021,https://doi.org/10.5194/amt-14-6335-2021, 2021
Short summary
Evaluation of retrieval methods for planetary boundary layer height based on radiosonde data
Hui Li, Boming Liu, Xin Ma, Shikuan Jin, Yingying Ma, Yuefeng Zhao, and Wei Gong
Atmos. Meas. Tech., 14, 5977–5986, https://doi.org/10.5194/amt-14-5977-2021,https://doi.org/10.5194/amt-14-5977-2021, 2021
Short summary

Cited articles

Bergstra, J. and Bengio, Y.: Random Search for Hyper-Parameter Optimization, J. Mach. Learn. Res., 13, 281–305, 2012. 
CDNova Instrument Ltd.: SHARP Cost Estimate, Calgary, Canada, 2017. 
Charlson, R. J., Schwartz, S. E., Hales, J. M., Cess, R. D., Coakley, J. A., Hansen, J. E., and Hofmann, D. J.: Climate Forcing by Anthropogenic Aerosols, Science, 255, 423–430, https://doi.org/10.1126/science.255.5043.423, 1992. 
Chen, T. and Guestrin, C.: XGBoost: A Scalable Tree Boosting System, in: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining – KDD '16, 785–794, ACM Press, San Francisco, California, USA, 2016. 
Chong, C.-Y. and Kumar, S. P.: Sensor networks: Evolution, opportunities, and challenges, Proc. IEEE, 91, 1247–1256, https://doi.org/10.1109/JPROC.2003.814918, 2003. 
Download
Short summary
The study evaluated the performance of a low-cost PM sensor in ambient conditions and calibrated its readings using simple linear regression (SLR), multiple linear regression (MLR), and two more powerful machine-learning algorithms with random search techniques for the best model architectures. The two machine-learning algorithms are XGBoost and a feedforward neural network (NN).