Articles | Volume 13, issue 6
https://doi.org/10.5194/amt-13-3277-2020
https://doi.org/10.5194/amt-13-3277-2020
Research article
 | 
30 Jun 2020
Research article |  | 30 Jun 2020

Mobile-platform measurement of air pollutant concentrations in California: performance assessment, statistical methods for evaluating spatial variations, and spatial representativeness

Paul A. Solomon, Dena Vallano, Melissa Lunden, Brian LaFranchi, Charles L. Blanchard, and Stephanie L. Shaw

Related authors

Mobile air quality monitoring and comparison to fixed monitoring sites for instrument performance assessment
Andrew R. Whitehill, Melissa Lunden, Brian LaFranchi, Surender Kaushik, and Paul A. Solomon
Atmos. Meas. Tech., 17, 2991–3009, https://doi.org/10.5194/amt-17-2991-2024,https://doi.org/10.5194/amt-17-2991-2024, 2024
Short summary
Quantifying organic matter and functional groups in particulate matter filter samples from the southeastern United States – Part 2: Spatiotemporal trends
Alexandra J. Boris, Satoshi Takahama, Andrew T. Weakley, Bruno M. Debus, Stephanie L. Shaw, Eric S. Edgerton, Taekyu Joo, Nga L. Ng, and Ann M. Dillner
Atmos. Meas. Tech., 14, 4355–4374, https://doi.org/10.5194/amt-14-4355-2021,https://doi.org/10.5194/amt-14-4355-2021, 2021
Short summary
Analysis of functional groups in atmospheric aerosols by infrared spectroscopy: method development for probabilistic modeling of organic carbon and organic matter concentrations
Charlotte Bürki, Matteo Reggente, Ann M. Dillner, Jenny L. Hand, Stephanie L. Shaw, and Satoshi Takahama
Atmos. Meas. Tech., 13, 1517–1538, https://doi.org/10.5194/amt-13-1517-2020,https://doi.org/10.5194/amt-13-1517-2020, 2020
Short summary
Quantifying organic matter and functional groups in particulate matter filter samples from the southeastern United States – Part 1: Methods
Alexandra J. Boris, Satoshi Takahama, Andrew T. Weakley, Bruno M. Debus, Carley D. Fredrickson, Martin Esparza-Sanchez, Charlotte Burki, Matteo Reggente, Stephanie L. Shaw, Eric S. Edgerton, and Ann M. Dillner
Atmos. Meas. Tech., 12, 5391–5415, https://doi.org/10.5194/amt-12-5391-2019,https://doi.org/10.5194/amt-12-5391-2019, 2019
Short summary
Ozone response to emission reductions in the southeastern United States
Charles L. Blanchard and George M. Hidy
Atmos. Chem. Phys., 18, 8183–8202, https://doi.org/10.5194/acp-18-8183-2018,https://doi.org/10.5194/acp-18-8183-2018, 2018
Short summary

Related subject area

Subject: Gases | Technique: In Situ Measurement | Topic: Validation and Intercomparisons
Evaluation of optimized flux chamber design for measurement of ammonia emission after field application of slurry with full-scale farm machinery
Johanna Pedersen, Sasha D. Hafner, Andreas Pacholski, Valthor I. Karlsson, Li Rong, Rodrigo Labouriau, and Jesper N. Kamp
Atmos. Meas. Tech., 17, 4493–4505, https://doi.org/10.5194/amt-17-4493-2024,https://doi.org/10.5194/amt-17-4493-2024, 2024
Short summary
Preparation of low-concentration H2 test gas mixtures in ambient air for calibration of H2 sensors
Niklas Karbach, Lisa Höhler, Peter Hoor, Heiko Bozem, Nicole Bobrowski, and Thorsten Hoffmann
Atmos. Meas. Tech., 17, 4081–4086, https://doi.org/10.5194/amt-17-4081-2024,https://doi.org/10.5194/amt-17-4081-2024, 2024
Short summary
Pico-Light H2O: intercomparison of in situ water vapour measurements during the AsA 2022 campaign
Mélanie Ghysels, Georges Durry, Nadir Amarouche, Dale Hurst, Emrys Hall, Kensy Xiong, Jean-Charles Dupont, Jean-Christophe Samake, Fabien Frérot, Raghed Bejjani, and Emmanuel D. Riviere
Atmos. Meas. Tech., 17, 3495–3513, https://doi.org/10.5194/amt-17-3495-2024,https://doi.org/10.5194/amt-17-3495-2024, 2024
Short summary
Mobile air quality monitoring and comparison to fixed monitoring sites for instrument performance assessment
Andrew R. Whitehill, Melissa Lunden, Brian LaFranchi, Surender Kaushik, and Paul A. Solomon
Atmos. Meas. Tech., 17, 2991–3009, https://doi.org/10.5194/amt-17-2991-2024,https://doi.org/10.5194/amt-17-2991-2024, 2024
Short summary
Intercomparison of eddy-covariance software for urban tall-tower sites
Changxing Lan, Matthias Mauder, Stavros Stagakis, Benjamin Loubet, Claudio D'Onofrio, Stefan Metzger, David Durden, and Pedro-Henrique Herig-Coimbra
Atmos. Meas. Tech., 17, 2649–2669, https://doi.org/10.5194/amt-17-2649-2024,https://doi.org/10.5194/amt-17-2649-2024, 2024
Short summary

Cited articles

Aclima: EPA Science Questions, available at: https://console.cloud.google.com/storage/browser/aclima_epa_science_questions?pli=1 (last access: 7 October 2019), 2018. 
Adams, M. D., DeLuca, P. F., Corr, D., and Kanaroglou, P. S.: Mobile air monitoring: measuring change in air quality in the city of Hamilton, 2005–2010, Soc. Indic. Res., 108, 351–364, https://doi.org/10.1007/s11205-012-0061-5, 2012. 
Apte, J. S., Messier, K. P., Gani, S., Brauer, M., Kirchstetter, T. W., Lunden, M. M., Marshall, J. D., Portier, C. J., Vermeulen, R. C. H., and Hamburg, S. P.: High-resolution air pollution mapping with Google street view cars: exploiting big data, Environ. Sci. Technol., 51, 6999–7008, https://doi.org/10.1021/acs.est.7b00891, 2017. 
Baldauf, R., Thoma, E., Hays, M., Shores, R., Kinsey, J., Gullett, B., Kimbrough, S., Isakov, V., Long, T., Snow, R., Khlystov, A., Weinstein, J., Chen, F-L., Seila, R., Olson, D., Gilmour, I., Cho, S-H., Watkins, N., Rowley, P., and Bang, J.: Traffic and meteorological impacts on near-road air quality: summary of methods and trends from the Raleigh near- road study, J. Air Waste Manage., 58, 865–878, https://doi.org/10.3155/1047-3289.58.7.865, 2008. 
Blanchard, C. L., Carr, E. L., Collins, J. F., Smith, T. B., Lehrman, D. E., and Michaels, H. M.: Spatial representativeness and scales of transport during the 1995 Integrated Monitoring Study in California's San Joaquin Valley, Atmos. Environ., 33, 4775–4786, https://doi.org/10.1016/S1352-2310(99)00284-8, 1999. 
Download
Short summary
Analyzing street-level air pollutants (2016–2017), this assessment indicates that mobile measurement is precise and accurate (5 % to 25 % bias) relative to regulatory sites, with higher spatial resolution. Collocated sensor measurements in California showed differences less than 20 %, suggesting that greater differences represent spatial variability. Mobile data confirm regulatory-site spatial representation and that pollutant levels can also be 6 to 8 times higher just blocks apart.