Articles | Volume 13, issue 6
https://doi.org/10.5194/amt-13-3487-2020
https://doi.org/10.5194/amt-13-3487-2020
Research article
 | 
30 Jun 2020
Research article |  | 30 Jun 2020

Using global reanalysis data to quantify and correct airflow distortion bias in shipborne wind speed measurements

Sebastian Landwehr, Iris Thurnherr, Nicolas Cassar, Martin Gysel-Beer, and Julia Schmale

Related authors

Exploring the coupled ocean and atmosphere system with a data science approach applied to observations from the Antarctic Circumnavigation Expedition
Sebastian Landwehr, Michele Volpi, F. Alexander Haumann, Charlotte M. Robinson, Iris Thurnherr, Valerio Ferracci, Andrea Baccarini, Jenny Thomas, Irina Gorodetskaya, Christian Tatzelt, Silvia Henning, Rob L. Modini, Heather J. Forrer, Yajuan Lin, Nicolas Cassar, Rafel Simó, Christel Hassler, Alireza Moallemi, Sarah E. Fawcett, Neil Harris, Ruth Airs, Marzieh H. Derkani, Alberto Alberello, Alessandro Toffoli, Gang Chen, Pablo Rodríguez-Ros, Marina Zamanillo, Pau Cortés-Greus, Lei Xue, Conor G. Bolas, Katherine C. Leonard, Fernando Perez-Cruz, David Walton, and Julia Schmale
Earth Syst. Dynam., 12, 1295–1369, https://doi.org/10.5194/esd-12-1295-2021,https://doi.org/10.5194/esd-12-1295-2021, 2021
Short summary
Meridional and vertical variations of the water vapour isotopic composition in the marine boundary layer over the Atlantic and Southern Ocean
Iris Thurnherr, Anna Kozachek, Pascal Graf, Yongbiao Weng, Dimitri Bolshiyanov, Sebastian Landwehr, Stephan Pfahl, Julia Schmale, Harald Sodemann, Hans Christian Steen-Larsen, Alessandro Toffoli, Heini Wernli, and Franziska Aemisegger
Atmos. Chem. Phys., 20, 5811–5835, https://doi.org/10.5194/acp-20-5811-2020,https://doi.org/10.5194/acp-20-5811-2020, 2020
Short summary
Using eddy covariance to measure the dependence of air–sea CO2 exchange rate on friction velocity
Sebastian Landwehr, Scott D. Miller, Murray J. Smith, Thomas G. Bell, Eric S. Saltzman, and Brian Ward
Atmos. Chem. Phys., 18, 4297–4315, https://doi.org/10.5194/acp-18-4297-2018,https://doi.org/10.5194/acp-18-4297-2018, 2018
Short summary
Estimation of bubble-mediated air–sea gas exchange from concurrent DMS and CO2 transfer velocities at intermediate–high wind speeds
Thomas G. Bell, Sebastian Landwehr, Scott D. Miller, Warren J. de Bruyn, Adrian H. Callaghan, Brian Scanlon, Brian Ward, Mingxi Yang, and Eric S. Saltzman
Atmos. Chem. Phys., 17, 9019–9033, https://doi.org/10.5194/acp-17-9019-2017,https://doi.org/10.5194/acp-17-9019-2017, 2017
Short summary
Analysis of the PKT correction for direct CO2 flux measurements over the ocean
S. Landwehr, S. D. Miller, M. J. Smith, E. S. Saltzman, and B. Ward
Atmos. Chem. Phys., 14, 3361–3372, https://doi.org/10.5194/acp-14-3361-2014,https://doi.org/10.5194/acp-14-3361-2014, 2014

Related subject area

Subject: Others (Wind, Precipitation, Temperature, etc.) | Technique: In Situ Measurement | Topic: Instruments and Platforms
Method development and application for the analysis of chiral organic marker species in ice-cores
Johanna Schäfer, Anja Beschnitt, François Burgay, Thomas Singer, Margit Schwikowski, and Thorsten Hoffmann
EGUsphere, https://doi.org/10.5194/egusphere-2024-2243,https://doi.org/10.5194/egusphere-2024-2243, 2024
Short summary
High-resolution wind speed measurements with quadcopter uncrewed aerial systems: calibration and verification in a wind tunnel with an active grid
Johannes Kistner, Lars Neuhaus, and Norman Wildmann
Atmos. Meas. Tech., 17, 4941–4955, https://doi.org/10.5194/amt-17-4941-2024,https://doi.org/10.5194/amt-17-4941-2024, 2024
Short summary
High-altitude balloon-launched uncrewed aircraft system measurements of atmospheric turbulence and qualitative comparison with infrasound microphone response
Anisa N. Haghighi, Ryan D. Nolin, Gary D. Pundsack, Nick Craine, Aliaksei Stratsilatau, and Sean C. C. Bailey
Atmos. Meas. Tech., 17, 4863–4889, https://doi.org/10.5194/amt-17-4863-2024,https://doi.org/10.5194/amt-17-4863-2024, 2024
Short summary
Evaluation of the hyperspectral radiometer (HSR1) at the Atmospheric Radiation Measurement (ARM) Southern Great Plains (SGP) site
Kelly A. Balmes, Laura D. Riihimaki, John Wood, Connor Flynn, Adam Theisen, Michael Ritsche, Lynn Ma, Gary B. Hodges, and Christian Herrera
Atmos. Meas. Tech., 17, 3783–3807, https://doi.org/10.5194/amt-17-3783-2024,https://doi.org/10.5194/amt-17-3783-2024, 2024
Short summary
Cost-effective off-grid automatic precipitation samplers for pollutant and biogeochemical atmospheric deposition
Alessia A. Colussi, Daniel Persaud, Melodie Lao, Bryan K. Place, Rachel F. Hems, Susan E. Ziegler, Kate A. Edwards, Cora J. Young, and Trevor C. VandenBoer
Atmos. Meas. Tech., 17, 3697–3718, https://doi.org/10.5194/amt-17-3697-2024,https://doi.org/10.5194/amt-17-3697-2024, 2024
Short summary

Cited articles

Belmonte Rivas, M. and Stoffelen, A.: Characterizing ERA-Interim and ERA5 surface wind biases using ASCAT, Ocean Sci., 15, 831–852, https://doi.org/10.5194/os-15-831-2019, 2019. a, b, c, d, e, f
Bigorre, S. P., Weller, R. A., Edson, J. B., and Ware, J. D.: A Surface Mooring for Air–Sea Interaction Research in the Gulf Stream. Part II: Analysis of the Observations and Their Accuracies, J. Atmos. Ocean. Technol., 30, 450–469, https://doi.org/10.1175/JTECH-D-12-00078.1, 2012. a
Bourassa, M. A., Legler, D. M., O'Brien, J. J., and Smith, S. R.: SeaWinds validation with research vessels, J. Geophys. Res., 108, 3019, https://doi.org/10.1029/2001JC001028, 2003. a
Copernicus Climate Change Service (C3S) (2017): ERA5: Fifth Generation of ECMWF Atmospheric Reanalyses of the Global Climate, available at: https://cds.climate.copernicus.eu/cdsapp#!/home (last access: July 2019), 2017. a
ECMWF: Part II: Data Assimilation, in: IFS Documentation CY41R2, no. 2 in IFS Documentation, ECMWF, European Centre for Medium-Range Weather Forecasts, Shinfield Park, Reading, RG2 9AX, England, 2016. a, b
Download
Short summary
Shipborne wind speed measurements are relevant for field studies of air–sea interaction processes. Distortion of the airflow by the ship’s structure can, however, lead to errors. We estimate the flow distortion bias by comparing the observations to ERA-5 reanalysis data. The underlying assumptions are that the bias depends only on the relative orientation of the ship to the wind direction and that the ERA-5 wind speeds are (on average) representative of the true wind speed.