Articles | Volume 13, issue 9
https://doi.org/10.5194/amt-13-4963-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/amt-13-4963-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Validating HY-2A CMR precipitable water vapor using ground-based and shipborne GNSS observations
First Institute of Oceanography, Ministry of Natural Resources,
Qingdao 266061, China
School of Earth Sciences and Engineering, Hohai University, Nanjing 211100, China
Yanxiong Liu
First Institute of Oceanography, Ministry of Natural Resources,
Qingdao 266061, China
Yang Liu
First Institute of Oceanography, Ministry of Natural Resources,
Qingdao 266061, China
Department of Geodesy, GeoForschungsZentrum, Telegrafenberg, 14473 Potsdam, Germany
Institute of Geodesy and Geoinformation Science, Technische
Universität Berlin, 10623 Berlin, Germany
Xiufeng He
School of Earth Sciences and Engineering, Hohai University, Nanjing 211100, China
Wenxue Xu
First Institute of Oceanography, Ministry of Natural Resources,
Qingdao 266061, China
Maorong Ge
Department of Geodesy, GeoForschungsZentrum, Telegrafenberg, 14473 Potsdam, Germany
Institute of Geodesy and Geoinformation Science, Technische
Universität Berlin, 10623 Berlin, Germany
Harald Schuh
Department of Geodesy, GeoForschungsZentrum, Telegrafenberg, 14473 Potsdam, Germany
Institute of Geodesy and Geoinformation Science, Technische
Universität Berlin, 10623 Berlin, Germany
Related authors
Zhilu Wu, Bofeng Li, Qingyuan Liu, Yanxiong Liu, Huayi Zhang, Dongxu Zhou, and Yang Liu
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-24, https://doi.org/10.5194/essd-2025-24, 2025
Preprint under review for ESSD
Short summary
Short summary
We created a reliable dataset of atmospheric water vapor from China's coastal stations (2009–2019), validated against global models and radiosonde data. The study highlights strong links between water vapor and sea surface temperature, aiding understanding of weather, extreme events, and climate change. This dataset supports improved forecasting and climate research.
Yihao Wu, Hongkai Shi, Dongzhen Jia, Ole Baltazar Andersen, Xiufeng He, Zhicai Luo, Yu Li, Shiyuan Chen, Xiaohuan Si, Sisu Diao, Yihuang Shi, and Yanglin Chen
Earth Syst. Sci. Data, 17, 2463–2488, https://doi.org/10.5194/essd-17-2463-2025, https://doi.org/10.5194/essd-17-2463-2025, 2025
Short summary
Short summary
We developed a high-quality and cost-effective shallow-water depth model for >120 islands in the South China Sea, using ICESat-2 and Sentinel-2 satellite data. This model maps water depths with an accuracy of ~1 m. Our findings highlight the limitations of existing global bathymetry models in shallow regions. Our model exhibited superior performance in capturing fine-scale bathymetric features with unprecedented spatial resolution, providing essential data for marine applications.
Jungang Wang, Junping Chen, and Yize Zhang
Geosci. Model Dev., 18, 1487–1504, https://doi.org/10.5194/gmd-18-1487-2025, https://doi.org/10.5194/gmd-18-1487-2025, 2025
Short summary
Short summary
The Global Navigation Satellite System (GNSS) is widely used for real-time monitoring and early warning of geohazards. Accurate modeling of tropospheric delays is critical to achieving high-precision GNSS solutions, and using external delays can improve real-time GNSS convergence times. Current empirical delay models only provide delay but not uncertainty. We propose a global empirical delay model with uncertainty and demonstrate its benefits in accelerating GNSS positioning convergence.
Zhilu Wu, Bofeng Li, Qingyuan Liu, Yanxiong Liu, Huayi Zhang, Dongxu Zhou, and Yang Liu
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-24, https://doi.org/10.5194/essd-2025-24, 2025
Preprint under review for ESSD
Short summary
Short summary
We created a reliable dataset of atmospheric water vapor from China's coastal stations (2009–2019), validated against global models and radiosonde data. The study highlights strong links between water vapor and sea surface temperature, aiding understanding of weather, extreme events, and climate change. This dataset supports improved forecasting and climate research.
Haiyang Shi, Geping Luo, Olaf Hellwich, Xiufeng He, Alishir Kurban, Philippe De Maeyer, and Tim Van de Voorde
Hydrol. Earth Syst. Sci., 27, 4551–4562, https://doi.org/10.5194/hess-27-4551-2023, https://doi.org/10.5194/hess-27-4551-2023, 2023
Short summary
Short summary
Using evidence from meteorological stations, this study assessed the climatic, hydrological, and ecological aridity changes in global drylands and their associated mechanisms. A decoupling between atmospheric, hydrological, and vegetation aridity was found. This highlights the added value of using station-scale data to assess dryland change as a complement to results based on coarse-resolution reanalysis data and land surface models.
S. Naderi Salim, M. M. Alizadeh, S. Chamankar, and H. Schuh
ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., X-4-W1-2022, 575–580, https://doi.org/10.5194/isprs-annals-X-4-W1-2022-575-2023, https://doi.org/10.5194/isprs-annals-X-4-W1-2022-575-2023, 2023
S. Nasr-Azadani, M.M. Alizadeh, and H. Schuh
ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., X-4-W1-2022, 595–602, https://doi.org/10.5194/isprs-annals-X-4-W1-2022-595-2023, https://doi.org/10.5194/isprs-annals-X-4-W1-2022-595-2023, 2023
Chaiyaporn Kitpracha, Robert Heinkelmann, Markus Ramatschi, Kyriakos Balidakis, Benjamin Männel, and Harald Schuh
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2022-238, https://doi.org/10.5194/amt-2022-238, 2022
Preprint withdrawn
Short summary
Short summary
In this study, we expected to learn what are the potential effects of GNSS atmospheric delays from this unique experiment. The results show that the instrument effects on GNSS zenith delays were mitigated by using the same instrument. The radome causes unexpected bias of GNSS zenith delays in this study. In order to calibrate the instrumental effects, we set up the GNSS co-location site experiment to demonstrate calibrating GNSS instrumental effects.
Benjamin Männel, Florian Zus, Galina Dick, Susanne Glaser, Maximilian Semmling, Kyriakos Balidakis, Jens Wickert, Marion Maturilli, Sandro Dahlke, and Harald Schuh
Atmos. Meas. Tech., 14, 5127–5138, https://doi.org/10.5194/amt-14-5127-2021, https://doi.org/10.5194/amt-14-5127-2021, 2021
Short summary
Short summary
Within the MOSAiC expedition, GNSS was used to monitor variations in atmospheric water vapor. Based on 15 months of continuously tracked data, coordinates and hourly zenith total delays (ZTDs) were determined using kinematic precise point positioning. The derived ZTD values agree within few millimeters with ERA5 and terrestrial GNSS and VLBI stations. The derived integrated water vapor corresponds to the frequently launched radiosondes (0.08 ± 0.04 kg m−2, rms of the differences of 1.47 kg m−2).
Chaiyaporn Kitpracha, Robert Heinkelmann, Markus Ramatschi, Kyriakos Balidakis, Benjamin Männel, and Harald Schuh
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2021-87, https://doi.org/10.5194/amt-2021-87, 2021
Preprint withdrawn
Short summary
Short summary
In this study, we expected to learn what are the potential effects of GNSS atmospheric delays from this unique experiment. The results show that the instrument effects on GNSS zenith delays were mitigated by using the same instrument. The radome causes unexpected bias of GNSS zenith delays in this study. Additionally, multipath effects at low-elevation observations degraded the tropospheric east gradients.
Xiao Chang, Benjamin Männel, and Harald Schuh
Adv. Geosci., 55, 33–45, https://doi.org/10.5194/adgeo-55-33-2021, https://doi.org/10.5194/adgeo-55-33-2021, 2021
Short summary
Short summary
This study focuses on the comparison of different solar radiation pressure (SRP) strategies combined with a-priori information and empirical SRP parameterization. Analysis of precise orbits as well as estimated empirical SRP parameters based on various SRP strategies shows visible differences and indicates the deficiencies of a-priori model or empirical parameterization. The orbit difference patterns presented in this study may give the view on how to improve the current SRP models.
Cited articles
Bevis, M., Businger, S., Herring, T. A., Rocken, C., Anthes, R. A., and
Ware, R. H.: GPS meteorology: Remote sensing of atmospheric water vapor
using the Global Positioning System, J. Geophys. Res., 97, 15787–15801, https://doi.org/10.1029/92JD01517, 1992.
Bevis, M., Businger, S., Chiswell, S., Herring, T. A., Anthes, R. A.,
Rocken, C., and Ware, R. H.: GPS meteorology: Mapping zenith wet delays onto
precipitable water, J. Appl. Meteorol., 33, 379–386, 1994.
Böhm, J., Niell, A., Tregoning, P., and Schuh, H.: Global Mapping
Function (GMF): A new empirical mapping function based on numerical weather
model data, Geophys. Res. Lett., 33, L07304, https://doi.org/10.1029/2005GL025546, 2006.
Böhm, J., Heinkelmann, R., and Schuh, H.: Short note: a global model of
pressure and temperature for geodetic applications, J. Geodesy, 81, 679–683, 2007.
Böhm, J. and Schuh, H.: Atmospheric effects in space geodesy, Springer,
Berlin, 2013.
Brown, S.: A novel near-land radiometer wet path-delay retrieval algorithm:
Application to the Jason-2/OSTM advanced microwave radiometer, IEEE
T. Geosci. Remote, 48, 1986–1992, 2010.
Brown, S.: Maintaining the long-term calibration of the Jason-2/OSTM
advanced microwave radiometer through intersatellite calibration, IEEE
T. Geosci. Remote, 51, 1531–1543, https://doi.org/10.1109/TGRS.2012.2213262, 2013.
Brown, S., Ruf, C., Keihm, S., and Kitiyakara, A.: Jason microwave
radiometer performance and on-orbit calibration, Mar. Geod., 27, 199–220, https://doi.org/10.1080/01490410490465643, 2004.
Davis, J., Herring, T., Shapiro, I., Rogers, A., and Elgered, G.: Geodesy by
radio interferometry: Effects of atmospheric modeling errors on estimates of
baseline length, Radio Science, 20, 1593–1607, 1985.
Dee, D. P., Uppala, S. M., Simmons, A., Berrisford, P., Poli, P., Kobayashi,
S., Andrae, U., Balmaseda, M., Balsamo, G., and Bauer, P.: The ERA‐Interim reanalysis: configuration and performance of the data assimilation system, Q. J. Roy. Meteor. Soc., 137, 553–597, https://doi.org/10.1002/qj.828, 2011.
Fernandes, M. J., Bastos, L., and Antunes, M.: Coastal satellite
altimetry – methods for data recovery and validation, in: Proceedings of the 3rd Meeting of the International Gravity and Geoid Commission, Gravity and Geoid 2002 – GG2002, Thessaloniki, Greece, 26–30 August 2002, edited by: Tziavos, I. N., ZITI EDITIONS, Thessaloniki, Greece, 302–307, 2003.
Fernandes, M. J., Lazaro, C., Nunes, A. L., Pires, N., Bastos, L., and Mendes, V. B.: GNSS-derived path delay: An approach to compute the wet tropospheric correction for coastal altimetry, IEEE Geosci. Remote S., 7, 596–600, 2010.
Gendt, G., Dick, G., Reigber, C., Tomassini, M., Liu, Y., and Ramatschi, M.:
Near real time GPS water vapor monitoring for numerical weather prediction
in Germany, J. Meteorol. Soc. Jpn., Ser. II, 82, 361–370, https://doi.org/10.2151/jmsj.2004.361, 2004.
Gutman, S. I., Sahm, S. R., Benjamin, S. G., Schwartz, B. E., Holub, K. L.,
Stewart, J. Q., and Smith, T. L.: Rapid retrieval and assimilation of ground
based GPS precipitable water observations at the NOAA Forecast Systems
Laboratory: Impact on weather forecasts, J. Meteorol. Soc. Jpn., Ser. II, 82, 351–360, 2004.
Jiang, X., Lin, M., Liu, J., Zhang, Y., Xie, X., Peng, H., and Zhou, W.: The
HY-2 satellite and its preliminary assessment, Int. J. Digit. Earth, 5, 266–281, https://doi.org/10.1080/17538947.2012.658685, 2012.
Jing-nan, L. and Mao-rong, G.: PANDA software and its preliminary result of positioning and orbit determination, Wuhan University Journal of Natural Sciences, 8, 603, https://doi.org/10.1007/BF02899825, 2003.
Kealy, J., Foster, J., and Businger, S.: GPS meteorology: An investigation
of ocean-based precipitable water estimates, J. Geophys. Res., 117, D17303, https://doi.org/10.1029/2011JD017422, 2012.
Kouba, J. and Héroux, P.: Precise point positioning using IGS orbit and
clock products, GPS Solut., 5, 12–28, 2001.
Li, X., Zus, F., Lu, C., Dick, G., Ning, T., Ge, M., Wickert, J., and Schuh,
H.: Retrieving of atmospheric parameters from multi-GNSS in real time:
Validation with water vapor radiometer and numerical weather model, Geophys. Res.-Atmos., 120, 7189–7204, 2015.
Liu, J. and Ge, M.: PANDA software and its preliminary result of positioning and orbit determination, Wuhan University Journal of Natural Sciences, 8, 603, https://doi.org/10.1007/BF02899825, 2003.
Liu, Y., Liu, Y., Chen, G., and Wu, Z.: Evaluation of HY-2A satellite-borne
water vapor radiometer with shipborne GPS and GLONASS observations over the
Indian Ocean, GPS Solut., 23, 87, https://doi.org/10.1007/s10291-019-0876-5, 2019.
Manandhar, S., Lee, Y. H., Meng, Y. S., Yuan, F., and Ong, J. T.:
GPS-Derived PWV for Rainfall Nowcasting in Tropical Region, IEEE
T. Geosci. Remote, 56, 4835–4844, 2018.
Nelson, R. R., Crisp, D., Ott, L. E., and O'Dell, C. W.: High-accuracy
measurements of total column water vapor from the Orbiting Carbon
Observatory-2, Geophys. Res. Lett., 43, 12261–12269, https://doi.org/10.1002/2016GL071200, 2016.
Ning, T., Wang, J., Elgered, G., Dick, G., Wickert, J., Bradke, M., Sommer, M., Querel, R., and Smale, D.: The uncertainty of the atmospheric integrated water vapour estimated from GNSS observations, Atmos. Meas. Tech., 9, 79–92, https://doi.org/10.5194/amt-9-79-2016, 2016.
Obligis, E., Eymard, L., Tran, N., Labroue, S., and Femenias, P.: First
three years of the microwave radiometer aboard Envisat: In-flight
calibration, processing, and validation of the geophysical products, J.
Atmos. Ocean. Tech., 23, 802–814, 2006.
Obligis, E., Desportes, C., Eymard, L., Fernandes, M., Lázaro, C., and
Nunes, A.: Tropospheric corrections for coastal altimetry, in: Coastal
altimetry, Springer, 147–176, 2011.
Peng, H., Lin, M., Mu, B., and Zhou, W.: Global statistical evaluation and performance analysis of HY-2A satellite radar altimeter data, Haiyang Xuebao, 37, 54–66, https://doi.org/10.3969/j.issn.0253-4193.2015.07.006, 2015.
Petit, G., and Luzum, B.: IERS Conventions (2010) IERS Tech Note 36, Verlag
des Bundesamtes für Geodäsie und Kartographie, Frankfurt am Main,
2010.
Randall, D. A., Wood, R. A., Bony, S., Colman, R., Fichefet, T., Fyfe, J.,
Kattsov, V., Pitman, A., Shukla, J., and Srinivasan, J.: Climate models and
their evaluation, in: Climate change 2007: The physical science basis.
Contribution of Working Group I to the Fourth Assessment Report of the IPCC
(FAR), Cambridge University Press, Cambridge, 589–662, 2007.
Robinson, I. S.: Measuring the Oceans from Space: The principles and methods
of satellite oceanography, Springer Science & Business Media, Berlin,
2004.
Rocken, C., Johnson, J., Van Hove, T., and Iwabuchi, T.: Atmospheric water
vapor and geoid measurements in the open ocean with GPS, Geophys. Res. Lett., 32, L12813, https://doi.org/10.1029/2005GL022573, 2005.
Saastamoinen, J.: Atmospheric correction for the troposphere and
stratosphere in radio ranging satellites, in: The use of artificial satellites for geodesy, edited by: Henriksen, S. W., Mancini, A., and Chovitz, B. H., American Geophysical Union (AGU), 15, 247–251, https://doi.org/10.1029/GM015p0247, 1972.
Shi, J., Zhao, Q., Geng, J., Lou, Y., Ge, M., and Liu, J.: Recent development of PANDA software in GNSS data processing, in: Proc. SPIE 7285, International Conference on Earth Observation Data Processing and Analysis (ICEODPA),
Wuhan, China, 28–30 December 2008, SPIE, 558–566, https://doi.org/10.1117/12.816261, 2008.
Thao, S., Eymard, L., Obligis, E., and Picard, B.: Comparison of regression
algorithms for the retrieval of the wet tropospheric path, IEEE J. Sel. Top. Appl., 8, 4302–4314, 2015.
Wang, J. and Liu, Z.: Improving GNSS PPP accuracy through WVR PWV augmentation, J. Geodesy, 93, 1685–1705, 2019.
Wang, J., Zhang, J., Fan, C., and Wang, J.: Validation of the “HY-2”
altimeter wet tropospheric path delay correction based on radiosonde data,
Acta Oceanol. Sin., 33, 48–53, 2014.
Wang, J., Wu, Z., Semmling, M., Zus, F., Gerland, S., Ramatschi, M., Ge, M., Wickert, J., and Schuh, H.: Retrieving Precipitable Water Vapor From
Shipborne Multi-GNSS Observations, Geophys. Res. Lett., 46, 5000–5008, https://doi.org/10.1029/2019GL082136, 2019.
Wang, Z. and Zhang, D.: Simulation on retrieving of atmospheric wet path delay by microwave radiometer on HY-2 satellite, in: 2008 China-Japan Joint Microwave Conference, Shanghai, China, 10–12 September 2008, IEEE, 665–668, 2008.
Wu, J.-T., Wu, S. C., Hajj, G. A., Bertiger, W. I., and Lichten, S. M.:
Effects of antenna orientation on GPS carrier phase, Manuscr. Geodaet., 18, 91–98, 1993.
Wu, Z., Wang, J., Liu, Y., He, X., Liu, Y., and Xu, W.: Validation of 7
Years in-Flight HY-2A Calibration Microwave Radiometer Products Using
Numerical Weather Model and Radiosondes, Remote Sens., 11, 1616, https://doi.org/10.3390/rs11131616, 2019.
Yang, L., Zhou, X., Lin, M., Lei, N., Mu, B., Zhu, L.: Global statistical assessment of HY-2A altimeter IGDR data, Progress in Geophysics, 31, 629–636, 2016.
Zhang, D., Wang, Z., Wang, H., Zhao, J., and Li, Y.: ACMR system description
and performance, Geoscience and Remote Sensing Symposium (IGARSS), in: 2014 IEEE Geoscience and Remote Sensing Symposium, Quebec City, QC, Canada, 13–18 July 2014, IEEE, 5179–5182, 2014.
Zhang, D., Wang, Z., Li, Y., Zhao, J., and Liu, Y.: Preliminary analysis of
HY-2 ACMR data, Geoscience and Remote Sensing Symposium (IGARSS), in: 2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Milan, Italy, 26–31 July 2015, IEEE, 177–180, 2015.
Zhao, J., Zhang, D., Wang, Z., and Li, Y.: The validation of HY-2A ACMR
retrieval algorithms and product, in: 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Beijing, China, 10–15 July 2016, IEEE, 411–413, 2016.
Zheng, G., Yang, J., and Ren, L.: Retrieval models of water vapor and wet
tropospheric path delay for the HY-2A calibration microwave radiometer,
J. Atmos. Ocean. Tech., 31, 1516–1528, 2014a.
Zheng, G., Yang, J., Ren, L., Zhou, W., and Huang, L.: The preliminary
cross-calibration of the HY-2A calibration microwave radiometer with the
Jason-1/2 microwave radiometers, Int. J. Remote Sens., 35, 4515–4531, 2014b.
Short summary
The HY-2A calibration microwave radiometer (CMR) water vapor product is validated using ground-based GNSS observations along the coastline and shipborne GNSS observations over the Indian Ocean. The validation result shows that HY-2A CMR PWV agrees well with ground-based GNSS PWV, with 2.67 mm in rms within 100 km and an RMS of 1.57 mm with shipborne GNSS for the distance threshold of 100 km. Ground-based GNSS and shipborne GNSS agree with HY-2A CMR well.
The HY-2A calibration microwave radiometer (CMR) water vapor product is validated using...