Articles | Volume 13, issue 2
Atmos. Meas. Tech., 13, 755–787, 2020
https://doi.org/10.5194/amt-13-755-2020
Atmos. Meas. Tech., 13, 755–787, 2020
https://doi.org/10.5194/amt-13-755-2020

Research article 18 Feb 2020

Research article | 18 Feb 2020

An improved air mass factor calculation for nitrogen dioxide measurements from the Global Ozone Monitoring Experiment-2 (GOME-2)

Song Liu et al.

Related authors

An improved total and tropospheric NO2 column retrieval for GOME-2
Song Liu, Pieter Valks, Gaia Pinardi, Isabelle De Smedt, Huan Yu, Steffen Beirle, and Andreas Richter
Atmos. Meas. Tech., 12, 1029–1057, https://doi.org/10.5194/amt-12-1029-2019,https://doi.org/10.5194/amt-12-1029-2019, 2019
Short summary
IMPROVEMENTS TO THE RETRIEVAL OF NO2 COLUMN FOR THE GOME-2 INSTRUMENT
S. Liu, P. Valks, G. Pinardi, I. De Smedt, H. Yu, and S. Beirle
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-3, 1109–1110, https://doi.org/10.5194/isprs-archives-XLII-3-1109-2018,https://doi.org/10.5194/isprs-archives-XLII-3-1109-2018, 2018
The STRatospheric Estimation Algorithm from Mainz (STREAM): estimating stratospheric NO2 from nadir-viewing satellites by weighted convolution
Steffen Beirle, Christoph Hörmann, Patrick Jöckel, Song Liu, Marloes Penning de Vries, Andrea Pozzer, Holger Sihler, Pieter Valks, and Thomas Wagner
Atmos. Meas. Tech., 9, 2753–2779, https://doi.org/10.5194/amt-9-2753-2016,https://doi.org/10.5194/amt-9-2753-2016, 2016

Related subject area

Subject: Gases | Technique: Remote Sensing | Topic: Data Processing and Information Retrieval
Detection and quantification of CH4 plumes using the WFM-DOAS retrieval on AVIRIS-NG hyperspectral data
Jakob Borchardt, Konstantin Gerilowski, Sven Krautwurst, Heinrich Bovensmann, Andrew K. Thorpe, David R. Thompson, Christian Frankenberg, Charles E. Miller, Riley M. Duren, and John Philip Burrows
Atmos. Meas. Tech., 14, 1267–1291, https://doi.org/10.5194/amt-14-1267-2021,https://doi.org/10.5194/amt-14-1267-2021, 2021
Short summary
Anthropogenic CO2 monitoring satellite mission: the need for multi-angle polarimetric observations
Stephanie P. Rusli, Otto Hasekamp, Joost aan de Brugh, Guangliang Fu, Yasjka Meijer, and Jochen Landgraf
Atmos. Meas. Tech., 14, 1167–1190, https://doi.org/10.5194/amt-14-1167-2021,https://doi.org/10.5194/amt-14-1167-2021, 2021
Short summary
Estimating real driving emissions from multi-axis differential optical absorption spectroscopy (MAX-DOAS) measurements at the A60 motorway near Mainz, Germany
Bianca Lauster, Steffen Dörner, Steffen Beirle, Sebastian Donner, Sergey Gromov, Katharina Uhlmannsiek, and Thomas Wagner
Atmos. Meas. Tech., 14, 769–783, https://doi.org/10.5194/amt-14-769-2021,https://doi.org/10.5194/amt-14-769-2021, 2021
Short summary
Methane retrieved from TROPOMI: improvement of the data product and validation of the first 2 years of measurements
Alba Lorente, Tobias Borsdorff, Andre Butz, Otto Hasekamp, Joost aan de Brugh, Andreas Schneider, Lianghai Wu, Frank Hase, Rigel Kivi, Debra Wunch, David F. Pollard, Kei Shiomi, Nicholas M. Deutscher, Voltaire A. Velazco, Coleen M. Roehl, Paul O. Wennberg, Thorsten Warneke, and Jochen Landgraf
Atmos. Meas. Tech., 14, 665–684, https://doi.org/10.5194/amt-14-665-2021,https://doi.org/10.5194/amt-14-665-2021, 2021
Short summary
Accounting for the photochemical variation in stratospheric NO2 in the SAGE III/ISS solar occultation retrieval
Kimberlee Dubé, Adam Bourassa, Daniel Zawada, Douglas Degenstein, Robert Damadeo, David Flittner, and William Randel
Atmos. Meas. Tech., 14, 557–566, https://doi.org/10.5194/amt-14-557-2021,https://doi.org/10.5194/amt-14-557-2021, 2021
Short summary

Cited articles

Agustí-Panareda, A., Massart, S., Chevallier, F., Balsamo, G., Boussetta, S., Dutra, E., and Beljaars, A.: A biogenic CO2 flux adjustment scheme for the mitigation of large-scale biases in global atmospheric CO2 analyses and forecasts, Atmos. Chem. Phys., 16, 10399–10418, https://doi.org/10.5194/acp-16-10399-2016, 2016. a
Bechtold, P., Semane, N., Lopez, P., Chaboureau, J.-P., Beljaars, A., and Bormann, N.: Representing equilibrium and nonequilibrium convection in large-scale models, J. Atmos. Sci., 71, 734–753, 2014. a
Beirle, S., Hörmann, C., Jöckel, P., Liu, S., Penning de Vries, M., Pozzer, A., Sihler, H., Valks, P., and Wagner, T.: The STRatospheric Estimation Algorithm from Mainz (STREAM): estimating stratospheric NO2 from nadir-viewing satellites by weighted convolution, Atmos. Meas. Tech., 9, 2753–2779, https://doi.org/10.5194/amt-9-2753-2016, 2016. a
Beljaars, A. and Viterbo, P.: Role of the boundary layer in a numerical weather prediction model, Clear and cloudy boundary layers, 287–304, 1998. a
Benedetti, A., Morcrette, J.-J., Boucher, O., Dethof, A., Engelen, R. J., Fisher, M., Flentje, H., Huneeus, N., Jones, L., Kaiser, J. W., Kinne, S., Mangold, A., Razinger, M., Simmons, A. J., and Suttie, M.: Aerosol analysis and forecast in the European centre for medium-range weather forecasts integrated forecast system: 2. Data assimilation, J. Geophys. Res.-Atmos., 114, D13205, https://doi.org/10.1029/2008JD011115, 2009. a
Short summary
This paper presents an improved tropospheric nitrogen dioxide (NO2) retrieval algorithm from the Global Ozone Monitoring Experiment-2 (GOME-2) instrument based on air mass factor (AMF) calculations that are performed with a more accurate knowledge of surface albedo, the a priori NO2 profile, and cloud and aerosol corrections.