Articles | Volume 14, issue 2
https://doi.org/10.5194/amt-14-1303-2021
https://doi.org/10.5194/amt-14-1303-2021
Research article
 | 
18 Feb 2021
Research article |  | 18 Feb 2021

Towards accurate and practical drone-based wind measurements with an ultrasonic anemometer

William Thielicke, Waldemar Hübert, Ulrich Müller, Michael Eggert, and Paul Wilhelm

Related authors

Comparison of turbulence measurements by a CSAT3B sonic anemometer and a high-resolution bistatic Doppler lidar
Matthias Mauder, Michael Eggert, Christian Gutsmuths, Stefan Oertel, Paul Wilhelm, Ingo Voelksch, Luise Wanner, Jens Tambke, and Ivan Bogoev
Atmos. Meas. Tech., 13, 969–983, https://doi.org/10.5194/amt-13-969-2020,https://doi.org/10.5194/amt-13-969-2020, 2020
Short summary
Validation of three-component wind lidar sensor for traceable highly resolved wind vector measurements
Stefan Oertel, Michael Eggert, Christian Gutsmuths, Paul Wilhelm, Harald Müller, and Helmut Többen
J. Sens. Sens. Syst., 8, 9–17, https://doi.org/10.5194/jsss-8-9-2019,https://doi.org/10.5194/jsss-8-9-2019, 2019
Short summary

Related subject area

Subject: Others (Wind, Precipitation, Temperature, etc.) | Technique: Remote Sensing | Topic: Instruments and Platforms
The Far-INfrarEd Spectrometer for Surface Emissivity (FINESSE) – Part 1: Instrument description and level 1 radiances
Jonathan E. Murray, Laura Warwick, Helen Brindley, Alan Last, Patrick Quigley, Andy Rochester, Alexander Dewar, and Daniel Cummins
Atmos. Meas. Tech., 17, 4757–4775, https://doi.org/10.5194/amt-17-4757-2024,https://doi.org/10.5194/amt-17-4757-2024, 2024
Short summary
Evaluation of the effects of different lightning protection rods on the data quality of C-band weather radars
Cornelius Hald, Maximilian Schaper, Annette Böhm, Michael Frech, Jan Petersen, Bertram Lange, and Benjamin Rohrdantz
Atmos. Meas. Tech., 17, 4695–4707, https://doi.org/10.5194/amt-17-4695-2024,https://doi.org/10.5194/amt-17-4695-2024, 2024
Short summary
Wind comparisons between meteor radar and Doppler shifts in airglow emissions using field-widened Michelson interferometers
Samuel K. Kristoffersen, William E. Ward, and Chris E. Meek
Atmos. Meas. Tech., 17, 3995–4014, https://doi.org/10.5194/amt-17-3995-2024,https://doi.org/10.5194/amt-17-3995-2024, 2024
Short summary
A new dual-frequency stratospheric–tropospheric and meteor radar: system description and first results
Qingchen Xu, Iain Murray Reid, Bing Cai, Christian Adami, Zengmao Zhang, Mingliang Zhao, and Wen Li
Atmos. Meas. Tech., 17, 2957–2975, https://doi.org/10.5194/amt-17-2957-2024,https://doi.org/10.5194/amt-17-2957-2024, 2024
Short summary
The Doppler wind, temperature, and aerosol RMR lidar system at Kühlungsborn, Germany – Part 1: Technical specifications and capabilities
Michael Gerding, Robin Wing, Eframir Franco-Diaz, Gerd Baumgarten, Jens Fiedler, Torsten Köpnick, and Reik Ostermann
Atmos. Meas. Tech., 17, 2789–2809, https://doi.org/10.5194/amt-17-2789-2024,https://doi.org/10.5194/amt-17-2789-2024, 2024
Short summary

Cited articles

Adkins, K. A., Swinford, C. J., Wambolt, P. D., and Bease, G.: Development of a sensor suite for atmospheric boundary layer measurement with a small multirotor unmanned aerial system, International Journal of Aviation, Aeronautics, and Aerospace, 7, 1–4, https://doi.org/10.15394/ijaaa.2020.1433, 2020. a, b
Anemoment: TriSonica mini wind and weather sensor, Anemoment, available at: https://anemoment.com/features/#trisonica-mini (last access: 9 February 2021), 2020. a
Barbieri, L., Kral, S. T., Bailey, S. C. C., Frazier, A. E., Jacob, J. D., Reuder, J., Brus, D., Chilson, P. B., Crick, C., Detweiler, C., Doddi, A., Elston, J., Foroutan, H., González-Rocha, J., Greene, B. R., Guzman, M. I., Houston, A. L., Islam, A., Kemppinen, O., Lawrence, D., Pillar-Little, E. A., Ross, S. D., Sama, M. P., Schmale, D. G., Schuyler, T. J., Shankar, A., Smith, S. W., Waugh, S., Dixon, C., Borenstein, S., and de Boer, G.: Intercomparison of Small Unmanned Aircraft System (sUAS) Measurements for Atmospheric Science during the LAPSE-RATE Campaign, Sensors, 19, 2179, https://doi.org/10.3390/s19092179, 2019. a, b, c, d
Barthelmie, R. J., Crippa, P., Wang, H., Smith, C. M., Krishnamurthy, R., Choukulkar, A., Calhoun, R., Valyou, D., Marzocca, P., Matthiesen, D., Brown, G., and Pryor, S. C.: 3D wind and turbulence characteristics of the atmospheric boundary layer, B. Am. Meteorol. Soc., 95, 743–756, https://doi.org/10.1175/bams-d-12-00111.1, 2014. a
Bilbro, J., Fichtl, G., Fitzjarrald, D., Krause, M., and Lee, R.: Airborne Doppler Lidar Wind Field Measurements, B. Am. Meteorol. Soc., 65, 348–359, https://doi.org/10.1175/1520-0477(1984)065<0348:adlwfm>2.0.co;2, 1984. a
Download
Short summary
We developed a wind-measuring drone with exceptional measuring accuracy and a very long flight time. Measurements are extensively validated at different levels. A comparison with a bistatic lidar reveals very small bias and RMSEs. We also present a demonstration measurement in the wake of a wind turbine. We think that our solution is a significant enhancement to existing designs, and other researchers can benefit from the details that we are giving in the paper.