Articles | Volume 14, issue 3
Atmos. Meas. Tech., 14, 2429–2439, 2021
https://doi.org/10.5194/amt-14-2429-2021
Atmos. Meas. Tech., 14, 2429–2439, 2021
https://doi.org/10.5194/amt-14-2429-2021

Research article 26 Mar 2021

Research article | 26 Mar 2021

Improvements to a laser-induced fluorescence instrument for measuring SO2 – impact on accuracy and precision

Pamela S. Rickly et al.

Related authors

Nighttime and Daytime Dark Oxidation Chemistry in Wildfire Plumes: An Observation and Model Analysis of FIREX-AQ Aircraft Data
Zachary C. J. Decker, Michael A. Robinson, Kelley C. Barsanti, Ilann Bourgeois, Matthew M. Coggon, Joshua P. DiGangi, Glenn S. Diskin, Frank M. Flocke, Alessandro Franchin, Carley D. Fredrickson, Samuel R. Hall, Hannah Halliday, Christopher D. Holmes, L. Gregory Huey, Young Ro Lee, Jakob Lindaas, Ann M. Middlebrook, Denise D. Montzka, Richard H. Moore, J. Andrew Neuman, John B. Nowak, Brett B. Palm, Jeff Peischl, Pamela S. Rickly, Andrew W. Rollins, Thomas B. Ryerson, Rebecca H. Schwantes, Lee Thornhill, Joel A. Thornton, Geoff S. Tyndall, Kirk Ullmann, Paul Van Rooy, Patrick R. Veres, Andrew J. Weinheimer, Elizabeth Wiggins, Edward Winstead, Caroline Womack, and Steven S. Brown
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2021-267,https://doi.org/10.5194/acp-2021-267, 2021
Preprint under review for ACP
Short summary
OH and HO2 radical chemistry in a midlatitude forest: measurements and model comparisons
Michelle M. Lew, Pamela S. Rickly, Brandon P. Bottorff, Emily Reidy, Sofia Sklaveniti, Thierry Léonardis, Nadine Locoge, Sebastien Dusanter, Shuvashish Kundu, Ezra Wood, and Philip S. Stevens
Atmos. Chem. Phys., 20, 9209–9230, https://doi.org/10.5194/acp-20-9209-2020,https://doi.org/10.5194/acp-20-9209-2020, 2020
Short summary
Single-photon laser-induced fluorescence detection of nitric oxide at sub-parts-per-trillion mixing ratios
Andrew W. Rollins, Pamela S. Rickly, Ru-Shan Gao, Thomas B. Ryerson, Steven S. Brown, Jeff Peischl, and Ilann Bourgeois
Atmos. Meas. Tech., 13, 2425–2439, https://doi.org/10.5194/amt-13-2425-2020,https://doi.org/10.5194/amt-13-2425-2020, 2020
Short summary

Related subject area

Subject: Gases | Technique: In Situ Measurement | Topic: Instruments and Platforms
Long-term NOx measurements in the remote marine tropical troposphere
Simone T. Andersen, Lucy J. Carpenter, Beth S. Nelson, Luis Neves, Katie A. Read, Chris Reed, Martyn Ward, Matthew J. Rowlinson, and James D. Lee
Atmos. Meas. Tech., 14, 3071–3085, https://doi.org/10.5194/amt-14-3071-2021,https://doi.org/10.5194/amt-14-3071-2021, 2021
Short summary
Study on the measurement of isoprene by differential optical absorption spectroscopy
Song Gao, Shanshan Wang, Chuanqi Gu, Jian Zhu, Ruifeng Zhang, Yanlin Guo, Yuhao Yan, and Bin Zhou
Atmos. Meas. Tech., 14, 2649–2657, https://doi.org/10.5194/amt-14-2649-2021,https://doi.org/10.5194/amt-14-2649-2021, 2021
Airborne measurements of oxygen concentration from the surface to the lower stratosphere and pole to pole
Britton B. Stephens, Eric J. Morgan, Jonathan D. Bent, Ralph F. Keeling, Andrew S. Watt, Stephen R. Shertz, and Bruce C. Daube
Atmos. Meas. Tech., 14, 2543–2574, https://doi.org/10.5194/amt-14-2543-2021,https://doi.org/10.5194/amt-14-2543-2021, 2021
Short summary
The improved comparative reactivity method (ICRM): measurements of OH reactivity under high-NOx conditions in ambient air
Wenjie Wang, Jipeng Qi, Jun Zhou, Bin Yuan, Yuwen Peng, Sihang Wang, Suxia Yang, Jonathan Williams, Vinayak Sinha, and Min Shao
Atmos. Meas. Tech., 14, 2285–2298, https://doi.org/10.5194/amt-14-2285-2021,https://doi.org/10.5194/amt-14-2285-2021, 2021
Short summary
Real-world measurement and mechanical-analysis-based verification of NOx and CO2 emissions from an in-use heavy-duty vehicle
Hiroo Hata, Kazuo Kokuryo, Takehiko Ogata, Masahiko Kugata, Koichi Yanai, Megumi Okada, Chikage Funakubo, Minoru Yamazaki, and Junya Hoshi
Atmos. Meas. Tech., 14, 2115–2126, https://doi.org/10.5194/amt-14-2115-2021,https://doi.org/10.5194/amt-14-2115-2021, 2021
Short summary

Cited articles

Ambrose, D., Ellender, J. H., Sprake, C. H. S., and Townsend, R.: Thermodynamic properties of organic oxygen compounds XLIII, Vapour pressures of some ethers, J. Chem. Thermodyn., 8, 165–178, https://doi.org/10.1016/0021-9614(76)90090-2, 1976. 
Andreae, M. O., Browell, E. V., Garstang, M., Gregory, G. L., Harriss, R. C., Hill, G. F., Jacob, D. J., Pereira, M. C., Sachse, G. W., Setzer, A. W., Silva Dias, P. L., Talbot, R. W., Torres, A. L., and Wofsy, S. C.: Biomass-burning emissions and associated haze layers over Amazonia, J. Geophys. Res., 93, 1509–1527, https://doi.org/10.1029/JD093iD02p01509, 1988. 
Bludský, O., Nachtigall, P., Hrušák, J., and Jensen, P.: The calculation of the vibrational states of SO2 in the C1B2 electronic state up to the SO(3Σ-)+O(3P) dissociation limit, Chem. Phys. Lett., 318, 607–613, https://doi.org/10.1016/S0009-2614(00)00015-4, 2000. 
Brock, C. A., Hamill, P., Wilson, J. C., Jonsson, H. H., and Chan, K. R.: Particle Formation in the Upper Tropical Troposphere: A Source of Nuclei for the Stratospheric Aerosol, Science, 270, 1650–1653, https://doi.org/10.1126/science.270.5242.1650, 1995. 
Carlton, A. G., Christiansen, A. E., Flesch, M. M., Hennigan, C. J., and Sareen, N.: Mulitphase Atmospheric Chemistry in Liquid Water: Impacts and Controllability of Organic Aerosol, Accounts Chem. Res., 53, 1715–1723, https://doi.org/10.1021/acs.accounts.0c00301, 2020. 
Download
Short summary
Key improvements have been made to an in situ laser-induced fluorescence instrument for measuring SO2 in polluted and pristine environments. Laser linewidth is reduced, rapid laser tuning is implemented, and fluorescence bandpass filters are optimized. These improvements have led to a 50 % reduction in instrument detection limit. The influence of aromatic compounds was also investigated and determined to not bias SO2 measurements.