Articles | Volume 14, issue 5
https://doi.org/10.5194/amt-14-3755-2021
https://doi.org/10.5194/amt-14-3755-2021
Research article
 | 
25 May 2021
Research article |  | 25 May 2021

A simplified method for the detection of convection using high-resolution imagery from GOES-16

Yoonjin Lee, Christian D. Kummerow, and Milija Zupanski

Related authors

Latent heating profiles from GOES-16 and its impacts on precipitation forecasts
Yoonjin Lee, Christian D. Kummerow, and Milija Zupanski
Atmos. Meas. Tech., 15, 7119–7136, https://doi.org/10.5194/amt-15-7119-2022,https://doi.org/10.5194/amt-15-7119-2022, 2022
Short summary
Latent heating profiles from GOES-16 and its comparison to heating from NEXRAD and GPM
Yoonjin Lee, Christian D. Kummerow, and Milija Zupanski
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2021-97,https://doi.org/10.5194/amt-2021-97, 2021
Preprint withdrawn
Short summary
Applying machine learning methods to detect convection using Geostationary Operational Environmental Satellite-16 (GOES-16) advanced baseline imager (ABI) data
Yoonjin Lee, Christian D. Kummerow, and Imme Ebert-Uphoff
Atmos. Meas. Tech., 14, 2699–2716, https://doi.org/10.5194/amt-14-2699-2021,https://doi.org/10.5194/amt-14-2699-2021, 2021
Short summary

Related subject area

Subject: Clouds | Technique: Remote Sensing | Topic: Data Processing and Information Retrieval
Discriminating between “drizzle or rain” and sea salt aerosols in Cloudnet for measurements over the Barbados Cloud Observatory
Johanna Roschke, Jonas Witthuhn, Marcus Klingebiel, Moritz Haarig, Andreas Foth, Anton Kötsche, and Heike Kalesse-Los
Atmos. Meas. Tech., 18, 487–508, https://doi.org/10.5194/amt-18-487-2025,https://doi.org/10.5194/amt-18-487-2025, 2025
Short summary
Cancellation of cloud shadow effects in the absorbing aerosol index retrieval algorithm of TROPOMI
Victor J. H. Trees, Ping Wang, Piet Stammes, Lieuwe G. Tilstra, David P. Donovan, and A. Pier Siebesma
Atmos. Meas. Tech., 18, 73–91, https://doi.org/10.5194/amt-18-73-2025,https://doi.org/10.5194/amt-18-73-2025, 2025
Short summary
Optimal estimation of cloud properties from thermal infrared observations with a combination of deep learning and radiative transfer simulation
He Huang, Quan Wang, Chao Liu, and Chen Zhou
Atmos. Meas. Tech., 17, 7129–7141, https://doi.org/10.5194/amt-17-7129-2024,https://doi.org/10.5194/amt-17-7129-2024, 2024
Short summary
3D cloud masking across a broad swath using multi-angle polarimetry and deep learning
Sean R. Foley, Kirk D. Knobelspiesse, Andrew M. Sayer, Meng Gao, James Hays, and Judy Hoffman
Atmos. Meas. Tech., 17, 7027–7047, https://doi.org/10.5194/amt-17-7027-2024,https://doi.org/10.5194/amt-17-7027-2024, 2024
Short summary
Dual-frequency (Ka-band and G-band) radar estimates of liquid water content profiles in shallow clouds
Juan M. Socuellamos, Raquel Rodriguez Monje, Matthew D. Lebsock, Ken B. Cooper, and Pavlos Kollias
Atmos. Meas. Tech., 17, 6965–6981, https://doi.org/10.5194/amt-17-6965-2024,https://doi.org/10.5194/amt-17-6965-2024, 2024
Short summary

Cited articles

Ai, Y., Li, J., Shi, W., Schmit, T. J., Cao, C., and Li, W.: Deep convective cloud characterizations from both broadband imager and hyperspectral infrared sounder measurements, J. Geophys. Res., 112, 1700–1712, https://doi.org/10.1002/2016JD025408, 2017. 
Autonès, F. and Claudon, M.: Algorithm Theoretical Basis Document for the Convection Product Processors of the NWC/GEO, available at : https://www.nwcsaf.org/ (last access: 2 May 2021), 2019. 
Bauer, P., Thorpe, A., and Brunet, G.: The quiet revolution of numerical weather prediction, Nature, 525, 47–55, https://doi.org/10.1038/nature14956, 2015. 
Bedka, K. and Khlopenkov, K.: A probabilistic multispectral pattern recognition method for detection of overshooting cloud tops using passive satellite imager observations, J. Appl. Meteorol. Clim., 55, 1983–2005, https://doi.org/10.1175/JAMC-D-15-0249.1, 2016. 
Bedka, K., Brunner, J., Dworak, R., Feltz, W., Otkin, J., and Greenwald, T.: Objective satellite-based detection of overshooting tops using infrared window channel brightness temperature gradients, J. Appl. Meteorol., 49, 181–202, https://doi.org/10.1175/2009JAMC2286.1, 2010. 
Download
Short summary
This study suggests two methods to detect convection using 1 min data from GOES-16: one method detects early convective clouds using their vertical growth rate and the other method detects mature convective clouds using their lumpy cloud top surfaces. Applying the two methods to 1-month data showed that the accuracy of the combined methods was 85.8 % and showed their potential to be used in regions where radar data are not available.
Share