Articles | Volume 14, issue 6
Atmos. Meas. Tech., 14, 4157–4169, 2021
https://doi.org/10.5194/amt-14-4157-2021
Atmos. Meas. Tech., 14, 4157–4169, 2021
https://doi.org/10.5194/amt-14-4157-2021
Research article
07 Jun 2021
Research article | 07 Jun 2021

Improved method of estimating temperatures at meteor peak heights

Emranul Sarkar et al.

Related authors

Signatures of gravity wave-induced instabilities in balloon lidar soundings of polar mesospheric clouds
Natalie Kaifler, Bernd Kaifler, Markus Rapp, and David C. Fritts
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2022-572,https://doi.org/10.5194/acp-2022-572, 2022
Preprint under review for ACP
Short summary
Reconstruction of precipitating electrons and three-dimensional structure of a pulsating auroral patch from monochromatic auroral images obtained from multiple observation points
Mizuki Fukizawa, Takeshi Sakanoi, Yoshimasa Tanaka, Yasunobu Ogawa, Keisuke Hosokawa, Björn Gustavsson, Kirsti Kauristie, Alexander Kozlovsky, Tero Raita, Urban Brändström, and Tima Sergienko
Ann. Geophys., 40, 475–484, https://doi.org/10.5194/angeo-40-475-2022,https://doi.org/10.5194/angeo-40-475-2022, 2022
Short summary
Hierarchical deconvolution for incoherent scatter radar data
Snizhana Ross, Arttu Arjas, Ilkka I. Virtanen, Mikko J. Sillanpää, Lassi Roininen, and Andreas Hauptmann
Atmos. Meas. Tech., 15, 3843–3857, https://doi.org/10.5194/amt-15-3843-2022,https://doi.org/10.5194/amt-15-3843-2022, 2022
Short summary
The polar mesospheric cloud dataset of the Balloon Lidar Experiment BOLIDE
Natalie Kaifler, Bernd Kaifler, Markus Rapp, and David C. Fritts
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2022-158,https://doi.org/10.5194/essd-2022-158, 2022
Preprint under review for ESSD
Short summary
Australian wildfire smoke in the stratosphere: the decay phase in 2020/2021 and impact on ozone depletion
Kevin Ohneiser, Albert Ansmann, Bernd Kaifler, Alexandra Chudnovsky, Boris Barja, Daniel A. Knopf, Natalie Kaifler, Holger Baars, Patric Seifert, Diego Villanueva, Cristofer Jimenez, Martin Radenz, Ronny Engelmann, Igor Veselovskii, and Félix Zamorano
Atmos. Chem. Phys., 22, 7417–7442, https://doi.org/10.5194/acp-22-7417-2022,https://doi.org/10.5194/acp-22-7417-2022, 2022
Short summary

Related subject area

Subject: Others (Wind, Precipitation, Temperature, etc.) | Technique: Remote Sensing | Topic: Validation and Intercomparisons
An assessment of reprocessed GPS/MET observations spanning 1995–1997
Anthony J. Mannucci, Chi O. Ao, Byron A. Iijima, Thomas K. Meehan, Panagiotis Vergados, E. Robert Kursinski, and William S. Schreiner
Atmos. Meas. Tech., 15, 4971–4987, https://doi.org/10.5194/amt-15-4971-2022,https://doi.org/10.5194/amt-15-4971-2022, 2022
Short summary
Turbulence parameters measured by the Beijing mesosphere–stratosphere–troposphere radar in the troposphere and lower stratosphere with three models: comparison and analyses
Ze Chen, Yufang Tian, Yinan Wang, Yongheng Bi, Xue Wu, Juan Huo, Linjun Pan, Yong Wang, and Daren Lü
Atmos. Meas. Tech., 15, 4785–4800, https://doi.org/10.5194/amt-15-4785-2022,https://doi.org/10.5194/amt-15-4785-2022, 2022
Short summary
Comparison of planetary boundary layer height from ceilometer with ARM radiosonde data
Damao Zhang, Jennifer Comstock, and Victor Morris
Atmos. Meas. Tech., 15, 4735–4749, https://doi.org/10.5194/amt-15-4735-2022,https://doi.org/10.5194/amt-15-4735-2022, 2022
Short summary
Behavior and mechanisms of Doppler wind lidar error in varying stability regimes
Rachel Robey and Julie K. Lundquist
Atmos. Meas. Tech., 15, 4585–4622, https://doi.org/10.5194/amt-15-4585-2022,https://doi.org/10.5194/amt-15-4585-2022, 2022
Short summary
Inter-comparison of atmospheric boundary layer (ABL) height estimates from different profiling sensors and models in the framework of HyMeX-SOP1
Donato Summa, Fabio Madonna, Noemi Franco, Benedetto De Rosa, and Paolo Di Girolamo
Atmos. Meas. Tech., 15, 4153–4170, https://doi.org/10.5194/amt-15-4153-2022,https://doi.org/10.5194/amt-15-4153-2022, 2022
Short summary

Cited articles

Bronshten, V. A.: Physics of meteoric phenomena, Dordrecht, Kluwer, Holland, https://doi.org/10.1007/978-94-009-7222-3, 1983. a
Carroll, R. and Ruppert, D.: The use and misuse of orthogonal regression in linear errors-in-variables models, The American Statistician, 50, 1–6, https://doi.org/10.1080/00031305.1996.10473533, 1996. a, b
Chilson, P. B., Czechowsky, P., and Schmidt, G.: A comparison of ambipolar diffusion coefficients in meteor trains using VHF radar and UV lidar, Geophys. Res. Lett., 23, 2745–2748, https://doi.org/10.1029/96GL02577, 1996. a
DLR (German Aerospace Center): Lidar data, HALO database [data sets], available at: https://halo-db.pa.op.dlr.de/mission/109, last access: 17 May 2021. a
Frost, C. and Thompson, S. G.: Correcting for regression dilution bias: comparison of methods for a single predictor variable, J. R. Stat. Soc. A Stat., 163, 173–189, https://doi.org/10.1111/1467-985X.00164, 2000. a
Download
Short summary
The biasing effect in meteor radar temperature has been a pressing issue for the last 2 decades. This paper has addressed the underlying reasons for such a biasing effect on both theoretical and experimental grounds. An improved statistical method has been developed which allows atmospheric temperatures at around 90 km to be measured with meteor radar in an independent way such that any subsequent bias correction or calibration is no longer required.