Articles | Volume 14, issue 6
https://doi.org/10.5194/amt-14-4157-2021
https://doi.org/10.5194/amt-14-4157-2021
Research article
 | 
07 Jun 2021
Research article |  | 07 Jun 2021

Improved method of estimating temperatures at meteor peak heights

Emranul Sarkar, Alexander Kozlovsky, Thomas Ulich, Ilkka Virtanen, Mark Lester, and Bernd Kaifler

Related authors

Frequency control and monitoring of the ALOMAR RMR lidar's pulsed high-power Nd:YAG lasers
Jens Fiedler, Gerd Baumgarten, Michael Gerding, Torsten Köpnick, Reik Ostermann, and Bernd Kaifler
Geosci. Instrum. Method. Data Syst., 15, 17–26, https://doi.org/10.5194/gi-15-17-2026,https://doi.org/10.5194/gi-15-17-2026, 2026
Short summary
An empirical model of high-latitude ionospheric conductances based on EISCAT observations
Liisa Juusola, Ilkka Virtanen, Spencer Mark Hatch, Heikki Vanhamäki, Maxime Grandin, Noora Partamies, Urs Ganse, Ilja Honkonen, Abiyot Workayehu, Antti Kero, and Minna Palmroth
Ann. Geophys., 43, 755–781, https://doi.org/10.5194/angeo-43-755-2025,https://doi.org/10.5194/angeo-43-755-2025, 2025
Short summary
High-latitude MSTIDs over the EISCAT-3D site: Solar activity and seasonal dependency
Rahul Rathi, Adrian Grocott, Tim Yeoman, and Mark Lester
EGUsphere, https://doi.org/10.5194/egusphere-2025-5769,https://doi.org/10.5194/egusphere-2025-5769, 2025
Short summary
Multipurpose incoherent scatter measurement and data analysis techniques for EISCAT3D
Ilkka I. Virtanen, Ayanew Nigusie, Antti Kero, Neethal Thomas, and Juhana Lankinen
Atmos. Meas. Tech., 18, 5895–5917, https://doi.org/10.5194/amt-18-5895-2025,https://doi.org/10.5194/amt-18-5895-2025, 2025
Short summary
Toolkit for incoherent scatter radar experiment design and applications to EISCAT_3D
Spencer Mark Hatch, Ilkka Virtanen, Karl Magnus Laundal, Habtamu Wubie Tesfaw, Juha Vierinen, Devin Ray Huyghebaert, Andres Spicher, and Jens Christian Hessen
Ann. Geophys., 43, 633–649, https://doi.org/10.5194/angeo-43-633-2025,https://doi.org/10.5194/angeo-43-633-2025, 2025
Short summary

Cited articles

Bronshten, V. A.: Physics of meteoric phenomena, Dordrecht, Kluwer, Holland, https://doi.org/10.1007/978-94-009-7222-3, 1983. a
Carroll, R. and Ruppert, D.: The use and misuse of orthogonal regression in linear errors-in-variables models, The American Statistician, 50, 1–6, https://doi.org/10.1080/00031305.1996.10473533, 1996. a, b
Chilson, P. B., Czechowsky, P., and Schmidt, G.: A comparison of ambipolar diffusion coefficients in meteor trains using VHF radar and UV lidar, Geophys. Res. Lett., 23, 2745–2748, https://doi.org/10.1029/96GL02577, 1996. a
DLR (German Aerospace Center): Lidar data, HALO database [data sets], available at: https://halo-db.pa.op.dlr.de/mission/109, last access: 17 May 2021. a
Frost, C. and Thompson, S. G.: Correcting for regression dilution bias: comparison of methods for a single predictor variable, J. R. Stat. Soc. A Stat., 163, 173–189, https://doi.org/10.1111/1467-985X.00164, 2000. a
Download
Short summary
The biasing effect in meteor radar temperature has been a pressing issue for the last 2 decades. This paper has addressed the underlying reasons for such a biasing effect on both theoretical and experimental grounds. An improved statistical method has been developed which allows atmospheric temperatures at around 90 km to be measured with meteor radar in an independent way such that any subsequent bias correction or calibration is no longer required.
Share