Articles | Volume 14, issue 6
Atmos. Meas. Tech., 14, 4461–4470, 2021
https://doi.org/10.5194/amt-14-4461-2021

Special issue: Simulation chambers as tools in atmospheric research (AMT/ACP/GMD...

Atmos. Meas. Tech., 14, 4461–4470, 2021
https://doi.org/10.5194/amt-14-4461-2021

Research article 17 Jun 2021

Research article | 17 Jun 2021

Comparative characterization of the performance of bio-aerosol nebulizers in connection with atmospheric simulation chambers

Silvia G. Danelli et al.

Related authors

Chemical composition of nanoparticles from α-pinene nucleation and the influence of isoprene and relative humidity at low temperature
Lucía Caudillo, Birte Rörup, Martin Heinritzi, Guillaume Marie, Mario Simon, Andrea C. Wagner, Tatjana Müller, Manuel Granzin, Antonio Amorim, Farnoush Ataei, Rima Baalbaki, Barbara Bertozzi, Zoé Brasseur, Randall Chiu, Biwu Chu, Lubna Dada, Jonathan Duplissy, Henning Finkenzeller, Loïc Gonzalez Carracedo, Xu-Cheng He, Victoria Hofbauer, Weimeng Kong, Houssni Lamkaddam, Chuan P. Lee, Brandon Lopez, Naser G. A. Mahfouz, Vladimir Makhmutov, Hanna E. Manninen, Ruby Marten, Dario Massabò, Roy L. Mauldin, Bernhard Mentler, Ugo Molteni, Antti Onnela, Joschka Pfeifer, Maxim Philippov, Ana A. Piedehierro, Meredith Schervish, Wiebke Scholz, Benjamin Schulze, Jiali Shen, Dominik Stolzenburg, Yuri Stozhkov, Mihnea Surdu, Christian Tauber, Yee Jun Tham, Ping Tian, António Tomé, Steffen Vogt, Mingyi Wang, Dongyu S. Wang, Stefan K. Weber, André Welti, Wang Yonghong, Wu Yusheng, Marcel Zauner-Wieczorek, Urs Baltensperger, Imad El Haddad, Richard C. Flagan, Armin Hansel, Kristina Höhler, Jasper Kirkby, Markku Kulmala, Katrianne Lehtipalo, Ottmar Möhler, Harald Saathoff, Rainer Volkamer, Paul M. Winkler, Neil M. Donahue, Andreas Kürten, and Joachim Curtius
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2021-512,https://doi.org/10.5194/acp-2021-512, 2021
Preprint under review for ACP
Short summary
Determination of Aethalometer multiple-scattering enhancement parameters and impact on source apportionment during the winter 2017/18 EMEP/ACTRIS/COLOSSAL campaign in Milan
Vera Bernardoni, Luca Ferrero, Ezio Bolzacchini, Alice Corina Forello, Asta Gregorič, Dario Massabò, Griša Močnik, Paolo Prati, Martin Rigler, Luca Santagostini, Francesca Soldan, Sara Valentini, Gianluigi Valli, and Roberta Vecchi
Atmos. Meas. Tech., 14, 2919–2940, https://doi.org/10.5194/amt-14-2919-2021,https://doi.org/10.5194/amt-14-2919-2021, 2021
Short summary
Cryoconite: an efficient accumulator of radioactive fallout in glacial environments
Giovanni Baccolo, Edyta Łokas, Paweł Gaca, Dario Massabò, Roberto Ambrosini, Roberto S. Azzoni, Caroline Clason, Biagio Di Mauro, Andrea Franzetti, Massimiliano Nastasi, Michele Prata, Paolo Prati, Ezio Previtali, Barbara Delmonte, and Valter Maggi
The Cryosphere, 14, 657–672, https://doi.org/10.5194/tc-14-657-2020,https://doi.org/10.5194/tc-14-657-2020, 2020
Short summary
Exploiting multi-wavelength aerosol absorption coefficients in a multi-time resolution source apportionment study to retrieve source-dependent absorption parameters
Alice Corina Forello, Vera Bernardoni, Giulia Calzolai, Franco Lucarelli, Dario Massabò, Silvia Nava, Rosaria Erika Pileci, Paolo Prati, Sara Valentini, Gianluigi Valli, and Roberta Vecchi
Atmos. Chem. Phys., 19, 11235–11252, https://doi.org/10.5194/acp-19-11235-2019,https://doi.org/10.5194/acp-19-11235-2019, 2019
Short summary
Two-wavelength thermal–optical determination of light-absorbing carbon in atmospheric aerosols
Dario Massabò, Alessandro Altomari, Virginia Vernocchi, and Paolo Prati
Atmos. Meas. Tech., 12, 3173–3182, https://doi.org/10.5194/amt-12-3173-2019,https://doi.org/10.5194/amt-12-3173-2019, 2019

Related subject area

Subject: Aerosols | Technique: Laboratory Measurement | Topic: Instruments and Platforms
The nano-scanning electrical mobility spectrometer (nSEMS) and its application to size distribution measurements of 1.5–25 nm particles
Weimeng Kong, Stavros Amanatidis, Huajun Mai, Changhyuk Kim, Benjamin C. Schulze, Yuanlong Huang, Gregory S. Lewis, Susanne V. Hering, John H. Seinfeld, and Richard C. Flagan
Atmos. Meas. Tech., 14, 5429–5445, https://doi.org/10.5194/amt-14-5429-2021,https://doi.org/10.5194/amt-14-5429-2021, 2021
Short summary
A dual-droplet approach for measuring the hygroscopicity of aqueous aerosol
Jack M. Choczynski, Ravleen Kaur Kohli, Craig S. Sheldon, Chelsea L. Price, and James F. Davies
Atmos. Meas. Tech., 14, 5001–5013, https://doi.org/10.5194/amt-14-5001-2021,https://doi.org/10.5194/amt-14-5001-2021, 2021
Short summary
A method for liquid spectrophotometric measurement of total and water-soluble iron and copper in ambient aerosols
Yuhan Yang, Dong Gao, and Rodney J. Weber
Atmos. Meas. Tech., 14, 4707–4719, https://doi.org/10.5194/amt-14-4707-2021,https://doi.org/10.5194/amt-14-4707-2021, 2021
Short summary
Efficacy of a portable, moderate-resolution, fast-scanning differential mobility analyzer for ambient aerosol size distribution measurements
Stavros Amanatidis​​​​​​​, Yuanlong Huang, Buddhi Pushpawela, Benjamin C. Schulze, Christopher M. Kenseth, Ryan X. Ward, John H. Seinfeld, Susanne V. Hering, and Richard C. Flagan
Atmos. Meas. Tech., 14, 4507–4516, https://doi.org/10.5194/amt-14-4507-2021,https://doi.org/10.5194/amt-14-4507-2021, 2021
Short summary
Coupling a gas chromatograph simultaneously to a flame ionization detector and chemical ionization mass spectrometer for isomer-resolved measurements of particle-phase organic compounds
Chenyang Bi, Jordan E. Krechmer, Graham O. Frazier, Wen Xu, Andrew T. Lambe, Megan S. Claflin, Brian M. Lerner, John T. Jayne, Douglas R. Worsnop, Manjula R. Canagaratna, and Gabriel Isaacman-VanWertz
Atmos. Meas. Tech., 14, 3895–3907, https://doi.org/10.5194/amt-14-3895-2021,https://doi.org/10.5194/amt-14-3895-2021, 2021
Short summary

Cited articles

Alsved, M., Bourouiba, L., Duchaine, C., Löndahl, J., Marr, L.C., Parker, S. T., Prussin II, A. J., and Thomas, R. J.: Natural sources and experimental generation of bioaerosols: Challenges and Perspectives, Aerosol Sci. Tech., 54, 547–571, https://doi.org/10.1080/02786826.2019.1682509, 2019. 
Amato, P., Joly, M., Schaupp, C., Attard, E., Möhler, O., Morris, C. E., Brunet, Y., and Delort, A.-M.: Survival and ice nucleation activity of bacteria as aerosols in a cloud simulation chamber, Atmos. Chem. Phys., 15, 6455–6465, https://doi.org/10.5194/acp-15-6455-2015, 2015. 
Becker, K. H.: Overview on the Development of Chambers for the Study of Atmospheric Chemical Processes, in: Environmental Simulation Chambers: Application to Atmospheric Chemical Processes, edited by: Barnes, I. and Rudzinski, K. J., Springer, Amsterdam, the Netherlands, 1–26, 2016. 
Bowers, R. M., McLetchie, S., Knight, R., and Fierer, N.: Spatial variability in airborne bacterial communities across land-use types and their relationship to the bacterial communities of potential source environments, Isme J., 5, 601–612, 2010. 
Brotto, P., Repetto, B., Formenti, P., Pangui, E., Livet, A., Bousserrhine, N., Martini, I., Varnier, O., Doussin, J.-F., and Prati, P.: Use of an atmospheric simulation chamber for bioaerosol investigation: a feasibility study, Aerobiologia, 31, 445–455, 2015. 
Download
Short summary
Experiments conducted inside confined artificial environments, such as atmospheric simulation chambers (ASCs), where atmospheric conditions and composition are controlled, can provide valuable information on bio-aerosol viability, dispersion, and impact. We focus here on the reproducible aerosolization and injection of viable microorganisms into an ASC, the first and crucial step of any experimental protocol to expose bio-aerosols to different atmospheric conditions.