Articles | Volume 14, issue 7
https://doi.org/10.5194/amt-14-5153-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/amt-14-5153-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Characterization of dark current signal measurements of the ACCDs used on board the Aeolus satellite
Fabian Weiler
CORRESPONDING AUTHOR
Deutsches Zentrum für Luft- und Raumfahrt, Institut für Physik
der Atmosphäre, Oberpfaffenhofen, Germany
Thomas Kanitz
European Space Agency-ESTEC, Keplerlaan 1, Noordwijk 2201 AZ, the
Netherlands
Denny Wernham
European Space Agency-ESTEC, Keplerlaan 1, Noordwijk 2201 AZ, the
Netherlands
Michael Rennie
European Centre for Medium-Range Weather Forecasts, Shinfield Park,
Reading RG2 9AX, United Kingdom
Dorit Huber
DoRIT, 82239 Alling, Germany
Marc Schillinger
Airbus Defence and Space (Toulouse), Rue de Cosmonautes, 31400
Toulouse, France
Olivier Saint-Pe
Airbus Defence and Space (Toulouse), Rue de Cosmonautes, 31400
Toulouse, France
Ray Bell
Teledyne e2v, 106 Waterhouse Lane, Chelmsford Essex CM1 2QU, United
Kingdom
Tommaso Parrinello
European Space Agency-ESRIN, Largo Galileo Galilei 1, 00044 Frascati
RM, Italy
Oliver Reitebuch
Deutsches Zentrum für Luft- und Raumfahrt, Institut für Physik
der Atmosphäre, Oberpfaffenhofen, Germany
Related authors
Benjamin Witschas, Christian Lemmerz, Alexander Geiß, Oliver Lux, Uwe Marksteiner, Stephan Rahm, Oliver Reitebuch, Andreas Schäfler, and Fabian Weiler
Atmos. Meas. Tech., 15, 7049–7070, https://doi.org/10.5194/amt-15-7049-2022, https://doi.org/10.5194/amt-15-7049-2022, 2022
Short summary
Short summary
In August 2018, the first wind lidar Aeolus was launched into space and has since then been providing data of the global wind field. The primary goal of Aeolus was the improvement of numerical weather prediction. To verify the quality of Aeolus wind data, DLR performed four airborne validation campaigns with two wind lidar systems. In this paper, we report on results from the two later campaigns, performed in Iceland and the tropics.
Oliver Lux, Benjamin Witschas, Alexander Geiß, Christian Lemmerz, Fabian Weiler, Uwe Marksteiner, Stephan Rahm, Andreas Schäfler, and Oliver Reitebuch
Atmos. Meas. Tech., 15, 6467–6488, https://doi.org/10.5194/amt-15-6467-2022, https://doi.org/10.5194/amt-15-6467-2022, 2022
Short summary
Short summary
We discuss the influence of different quality control schemes on the results of Aeolus wind product validation and present statistical tools for ensuring consistency and comparability among diverse validation studies with regard to the specific error characteristics of the Rayleigh-clear and Mie-cloudy winds. The developed methods are applied for the validation of Aeolus winds against an ECMWF model background and airborne wind lidar data from the Joint Aeolus Tropical Atlantic Campaign.
Benjamin Witschas, Christian Lemmerz, Oliver Lux, Uwe Marksteiner, Oliver Reitebuch, Fabian Weiler, Frederic Fabre, Alain Dabas, Thomas Flament, Dorit Huber, and Michael Vaughan
Atmos. Meas. Tech., 15, 1465–1489, https://doi.org/10.5194/amt-15-1465-2022, https://doi.org/10.5194/amt-15-1465-2022, 2022
Short summary
Short summary
In August 2018, the ESA launched the first Doppler wind lidar into space. In order to calibrate the instrument and to monitor the overall instrument conditions, instrument spectral registration measurements have been performed with Aeolus on a weekly basis. Based on these measurements, the alignment drift of the Aeolus satellite instrument is estimated by applying tools and mathematical model functions to analyze the spectrometer transmission curves.
Oliver Lux, Christian Lemmerz, Fabian Weiler, Uwe Marksteiner, Benjamin Witschas, Stephan Rahm, Alexander Geiß, Andreas Schäfler, and Oliver Reitebuch
Atmos. Meas. Tech., 15, 1303–1331, https://doi.org/10.5194/amt-15-1303-2022, https://doi.org/10.5194/amt-15-1303-2022, 2022
Short summary
Short summary
The article discusses modifications in the wind retrieval of the ALADIN Airborne Demonstrator (A2D) – one of the key instruments for the validation of Aeolus. Thanks to the retrieval refinements, which are demonstrated in the context of two airborne campaigns in 2019, the systematic and random wind errors of the A2D were significantly reduced, thereby enhancing its validation capabilities. Finally, wind comparisons between A2D and Aeolus for the validation of the satellite data are presented.
Fabian Weiler, Michael Rennie, Thomas Kanitz, Lars Isaksen, Elena Checa, Jos de Kloe, Ngozi Okunde, and Oliver Reitebuch
Atmos. Meas. Tech., 14, 7167–7185, https://doi.org/10.5194/amt-14-7167-2021, https://doi.org/10.5194/amt-14-7167-2021, 2021
Short summary
Short summary
This paper summarizes the identification and correction of one of the most important systematic error sources for the wind measurements of the ESA satellite Aeolus. It depicts the effects of small temperature variations in the primary telescope mirror on the quality of the wind products and describes the approach to correct for it in the near-real-time processing. Moreover, the performance of the correction approach is assessed, and alternative approaches are discussed.
Oliver Lux, Christian Lemmerz, Fabian Weiler, Thomas Kanitz, Denny Wernham, Gonçalo Rodrigues, Andrew Hyslop, Olivier Lecrenier, Phil McGoldrick, Frédéric Fabre, Paolo Bravetti, Tommaso Parrinello, and Oliver Reitebuch
Atmos. Meas. Tech., 14, 6305–6333, https://doi.org/10.5194/amt-14-6305-2021, https://doi.org/10.5194/amt-14-6305-2021, 2021
Short summary
Short summary
The work assesses the frequency stability of the laser transmitters on board Aeolus and discusses its influence on the quality of the global wind data. Excellent frequency stability of the space lasers is evident, although enhanced frequency noise occurs at certain locations along the orbit due to micro-vibrations that are introduced by the satellite’s reaction wheels. The study elaborates on this finding and investigates the extent to which the enhanced frequency noise increases the wind error.
Oliver Lux, Michael Rennie, Jos de Kloe, and Oliver Reitebuch
EGUsphere, https://doi.org/10.5194/egusphere-2025-4596, https://doi.org/10.5194/egusphere-2025-4596, 2025
This preprint is open for discussion and under review for Atmospheric Measurement Techniques (AMT).
Short summary
Short summary
The European Space Agency's Aeolus satellite (2018–2023) was the first mission to measure global wind profiles from space. We analysed its performance over five years to understand data quality and coverage under different conditions. By linking instrument behaviour to wind observations, we identified strengths and limitations. These results provide essential guidance for the design and operation of the operational follow-on mission Aeolus-2.
Peristera Paschou, Nikolaos Siomos, Eleni Marinou, Antonis Gkikas, Samira M. Idrissa, Daniel T. Quaye, Désiré D. Fiogbe Attannon, Kalliopi Artemis Voudouri, Charikleia Meleti, David P. Donovan, George Georgoussis, Tommaso Parrinello, Thorsten Fehr, Jonas von Bismarck, and Vassilis Amiridis
Atmos. Meas. Tech., 18, 4731–4754, https://doi.org/10.5194/amt-18-4731-2025, https://doi.org/10.5194/amt-18-4731-2025, 2025
Short summary
Short summary
This study presents the results from a validation study on the Level 2A products (aerosol optical properties) of the ESA's (European Space Agency) Aeolus mission. Measurements from the eVe lidar, a combined linear/circular polarization and Raman lidar and ESA's ground reference system, that have been collected during the Joint Aeolus Tropical Atlantic Campaign are compared with collocated Aeolus Level 2A profiles obtained from the latest version (Baseline 16) of the Aeolus algorithms.
Dimitri Trapon, Holger Baars, Athena Augusta Floutsi, Sebastian Bley, Moritz Haarig, Adrien Lacour, Thomas Flament, Alain Dabas, Amin R. Nehrir, Frithjof Ehlers, and Dorit Huber
Atmos. Meas. Tech., 18, 3873–3896, https://doi.org/10.5194/amt-18-3873-2025, https://doi.org/10.5194/amt-18-3873-2025, 2025
Short summary
Short summary
The study highlights how aerosol measurements from aircraft can be used in synergy with ground-based observations to validate the European Space Agency's Aeolus satellite aerosol product above the tropical Atlantic. For the first time, collocated sections of the troposphere up to 626 km long are crossed. Combining measurements from satellite, aircraft, and ground-based instruments allows characterization of the optical properties of the observed dust particles emitted from the Sahara.
Anna Kampouri, Vassilis Amiridis, Thanasis Georgiou, Stavros Solomos, Anna Gialitaki, Maria Tsichla, Michael Rennie, Simona Scollo, and Prodromos Zanis
Atmos. Chem. Phys., 25, 7343–7368, https://doi.org/10.5194/acp-25-7343-2025, https://doi.org/10.5194/acp-25-7343-2025, 2025
Short summary
Short summary
This study proposes a novel inverse modeling framework coupled with remote sensing data for improving volcanic ash dispersion forecasts, essential for aviation safety. By integrating FLEXPART dispersion model outputs with ground-based ACTRIS lidar observations, the approach estimates Etna's volcanic particle emissions and highlights a significant enhancement in the forecast accuracy.
Michael Vaughan, Kevin Ridley, Benjamin Witschas, Oliver Lux, Ines Nikolaus, and Oliver Reitebuch
Atmos. Meas. Tech., 18, 2149–2181, https://doi.org/10.5194/amt-18-2149-2025, https://doi.org/10.5194/amt-18-2149-2025, 2025
Short summary
Short summary
ESA's Aeolus mission, launched in 2018, has exceeded expectations, providing valuable global wind lidar data for nearly 5 years. Its data have improved weather forecasting, with Mie-cloudy winds proving to be especially precise. Challenges have emerged, such as unexpected misalignments in signal angles and reduced signal levels due to beam clipping and laser issues. Lessons from Aeolus highlight the need for better optical alignment and active control systems for future lidar missions.
Ping Wang, David Patrick Donovan, Gerd-Jan van Zadelhoff, Jos de Kloe, Dorit Huber, and Katja Reissig
Atmos. Meas. Tech., 17, 5935–5955, https://doi.org/10.5194/amt-17-5935-2024, https://doi.org/10.5194/amt-17-5935-2024, 2024
Short summary
Short summary
We describe the new feature mask (AEL-FM) and aerosol profile retrieval (AEL-PRO) algorithms developed for Aeolus lidar and present the evaluation of the Aeolus products using CALIPSO data for dust aerosols over Africa. We have found that Aeolus and CALIPSO show similar aerosol patterns in the collocated orbits and have good agreement for the extinction coefficients for the dust aerosols, especially for the cloud-free scenes. The finding is applicable to Aeolus L2A product Baseline 17.
Kangwen Sun, Guangyao Dai, Songhua Wu, Oliver Reitebuch, Holger Baars, Jiqiao Liu, and Suping Zhang
Atmos. Chem. Phys., 24, 4389–4409, https://doi.org/10.5194/acp-24-4389-2024, https://doi.org/10.5194/acp-24-4389-2024, 2024
Short summary
Short summary
This paper investigates the correlation between marine aerosol optical properties and wind speeds over remote oceans using the spaceborne lidars ALADIN and CALIOP. Three remote ocean areas are selected. Pure marine aerosol optical properties at 355 nm are derived from ALADIN. The relationships between marine aerosol optical properties and wind speeds are analyzed within and above the marine atmospheric boundary layer, revealing the effect of wind speed on marine aerosols over remote oceans.
Manfred Ern, Mohamadou A. Diallo, Dina Khordakova, Isabell Krisch, Peter Preusse, Oliver Reitebuch, Jörn Ungermann, and Martin Riese
Atmos. Chem. Phys., 23, 9549–9583, https://doi.org/10.5194/acp-23-9549-2023, https://doi.org/10.5194/acp-23-9549-2023, 2023
Short summary
Short summary
Quasi-biennial oscillation (QBO) of the stratospheric tropical winds is an important mode of climate variability but is not well reproduced in free-running climate models. We use the novel global wind observations by the Aeolus satellite and radiosondes to show that the QBO is captured well in three modern reanalyses (ERA-5, JRA-55, and MERRA-2). Good agreement is also found also between Aeolus and reanalyses for large-scale tropical wave modes in the upper troposphere and lower stratosphere.
Athena Augusta Floutsi, Holger Baars, Ronny Engelmann, Dietrich Althausen, Albert Ansmann, Stephanie Bohlmann, Birgit Heese, Julian Hofer, Thomas Kanitz, Moritz Haarig, Kevin Ohneiser, Martin Radenz, Patric Seifert, Annett Skupin, Zhenping Yin, Sabur F. Abdullaev, Mika Komppula, Maria Filioglou, Elina Giannakaki, Iwona S. Stachlewska, Lucja Janicka, Daniele Bortoli, Eleni Marinou, Vassilis Amiridis, Anna Gialitaki, Rodanthi-Elisavet Mamouri, Boris Barja, and Ulla Wandinger
Atmos. Meas. Tech., 16, 2353–2379, https://doi.org/10.5194/amt-16-2353-2023, https://doi.org/10.5194/amt-16-2353-2023, 2023
Short summary
Short summary
DeLiAn is a collection of lidar-derived aerosol intensive optical properties for several aerosol types, namely the particle linear depolarization ratio, the extinction-to-backscatter ratio (lidar ratio) and the Ångström exponent. The data collection is based on globally distributed, long-term, ground-based, multiwavelength, Raman and polarization lidar measurements and currently covers two wavelengths, 355 and 532 nm, for 13 aerosol categories ranging from basic aerosol types to mixtures.
Pantelis Kiriakidis, Antonis Gkikas, Georgios Papangelis, Theodoros Christoudias, Jonilda Kushta, Emmanouil Proestakis, Anna Kampouri, Eleni Marinou, Eleni Drakaki, Angela Benedetti, Michael Rennie, Christian Retscher, Anne Grete Straume, Alexandru Dandocsi, Jean Sciare, and Vasilis Amiridis
Atmos. Chem. Phys., 23, 4391–4417, https://doi.org/10.5194/acp-23-4391-2023, https://doi.org/10.5194/acp-23-4391-2023, 2023
Short summary
Short summary
With the launch of the Aeolus satellite, higher-accuracy wind products became available. This research was carried out to validate the assimilated wind products by testing their effect on the WRF-Chem model predictive ability of dust processes. This was carried out for the eastern Mediterranean and Middle East region for two 2-month periods in autumn and spring 2020. The use of the assimilated products improved the dust forecasts of the autumn season (both quantitatively and qualitatively).
Antonis Gkikas, Anna Gialitaki, Ioannis Binietoglou, Eleni Marinou, Maria Tsichla, Nikolaos Siomos, Peristera Paschou, Anna Kampouri, Kalliopi Artemis Voudouri, Emmanouil Proestakis, Maria Mylonaki, Christina-Anna Papanikolaou, Konstantinos Michailidis, Holger Baars, Anne Grete Straume, Dimitris Balis, Alexandros Papayannis, Tomasso Parrinello, and Vassilis Amiridis
Atmos. Meas. Tech., 16, 1017–1042, https://doi.org/10.5194/amt-16-1017-2023, https://doi.org/10.5194/amt-16-1017-2023, 2023
Short summary
Short summary
We perform an assessment analysis of the Aeolus Standard Correct Algorithm (SCA) backscatter coefficient retrievals against reference observations acquired at three Greek lidar stations (Athens, Thessaloniki and Antikythera) of the PANACEA network. Overall, 43 cases are analysed, whereas specific aerosol scenarios in the vicinity of Antikythera island (SW Greece) are emphasised. All key Cal/Val aspects and recommendations, and the ongoing related activities, are thoroughly discussed.
Benjamin Witschas, Christian Lemmerz, Alexander Geiß, Oliver Lux, Uwe Marksteiner, Stephan Rahm, Oliver Reitebuch, Andreas Schäfler, and Fabian Weiler
Atmos. Meas. Tech., 15, 7049–7070, https://doi.org/10.5194/amt-15-7049-2022, https://doi.org/10.5194/amt-15-7049-2022, 2022
Short summary
Short summary
In August 2018, the first wind lidar Aeolus was launched into space and has since then been providing data of the global wind field. The primary goal of Aeolus was the improvement of numerical weather prediction. To verify the quality of Aeolus wind data, DLR performed four airborne validation campaigns with two wind lidar systems. In this paper, we report on results from the two later campaigns, performed in Iceland and the tropics.
Oliver Lux, Benjamin Witschas, Alexander Geiß, Christian Lemmerz, Fabian Weiler, Uwe Marksteiner, Stephan Rahm, Andreas Schäfler, and Oliver Reitebuch
Atmos. Meas. Tech., 15, 6467–6488, https://doi.org/10.5194/amt-15-6467-2022, https://doi.org/10.5194/amt-15-6467-2022, 2022
Short summary
Short summary
We discuss the influence of different quality control schemes on the results of Aeolus wind product validation and present statistical tools for ensuring consistency and comparability among diverse validation studies with regard to the specific error characteristics of the Rayleigh-clear and Mie-cloudy winds. The developed methods are applied for the validation of Aeolus winds against an ECMWF model background and airborne wind lidar data from the Joint Aeolus Tropical Atlantic Campaign.
Isabell Krisch, Neil P. Hindley, Oliver Reitebuch, and Corwin J. Wright
Atmos. Meas. Tech., 15, 3465–3479, https://doi.org/10.5194/amt-15-3465-2022, https://doi.org/10.5194/amt-15-3465-2022, 2022
Short summary
Short summary
The Aeolus satellite measures global height resolved profiles of wind along a certain line-of-sight. However, for atmospheric dynamics research, wind measurements along the three cardinal axes are most useful. This paper presents methods to convert the measurements into zonal and meridional wind components. By combining the measurements during ascending and descending orbits, we achieve good derivation of zonal wind (equatorward of 80° latitude) and meridional wind (poleward of 70° latitude).
Peristera Paschou, Nikolaos Siomos, Alexandra Tsekeri, Alexandros Louridas, George Georgoussis, Volker Freudenthaler, Ioannis Binietoglou, George Tsaknakis, Alexandros Tavernarakis, Christos Evangelatos, Jonas von Bismarck, Thomas Kanitz, Charikleia Meleti, Eleni Marinou, and Vassilis Amiridis
Atmos. Meas. Tech., 15, 2299–2323, https://doi.org/10.5194/amt-15-2299-2022, https://doi.org/10.5194/amt-15-2299-2022, 2022
Short summary
Short summary
The eVe lidar delivers quality-assured aerosol and cloud optical properties according to the standards of ACTRIS. It is a mobile reference system for the validation of the ESA's Aeolus satellite mission (L2 aerosol and cloud products). eVe provides linear and circular polarisation measurements with Raman capabilities. Here, we describe the system design, the polarisation calibration techniques, and the software for the retrieval of the optical products.
Benjamin Witschas, Christian Lemmerz, Oliver Lux, Uwe Marksteiner, Oliver Reitebuch, Fabian Weiler, Frederic Fabre, Alain Dabas, Thomas Flament, Dorit Huber, and Michael Vaughan
Atmos. Meas. Tech., 15, 1465–1489, https://doi.org/10.5194/amt-15-1465-2022, https://doi.org/10.5194/amt-15-1465-2022, 2022
Short summary
Short summary
In August 2018, the ESA launched the first Doppler wind lidar into space. In order to calibrate the instrument and to monitor the overall instrument conditions, instrument spectral registration measurements have been performed with Aeolus on a weekly basis. Based on these measurements, the alignment drift of the Aeolus satellite instrument is estimated by applying tools and mathematical model functions to analyze the spectrometer transmission curves.
Oliver Lux, Christian Lemmerz, Fabian Weiler, Uwe Marksteiner, Benjamin Witschas, Stephan Rahm, Alexander Geiß, Andreas Schäfler, and Oliver Reitebuch
Atmos. Meas. Tech., 15, 1303–1331, https://doi.org/10.5194/amt-15-1303-2022, https://doi.org/10.5194/amt-15-1303-2022, 2022
Short summary
Short summary
The article discusses modifications in the wind retrieval of the ALADIN Airborne Demonstrator (A2D) – one of the key instruments for the validation of Aeolus. Thanks to the retrieval refinements, which are demonstrated in the context of two airborne campaigns in 2019, the systematic and random wind errors of the A2D were significantly reduced, thereby enhancing its validation capabilities. Finally, wind comparisons between A2D and Aeolus for the validation of the satellite data are presented.
Songhua Wu, Kangwen Sun, Guangyao Dai, Xiaoye Wang, Xiaoying Liu, Bingyi Liu, Xiaoquan Song, Oliver Reitebuch, Rongzhong Li, Jiaping Yin, and Xitao Wang
Atmos. Meas. Tech., 15, 131–148, https://doi.org/10.5194/amt-15-131-2022, https://doi.org/10.5194/amt-15-131-2022, 2022
Short summary
Short summary
During the VAL-OUC campaign, we established a coherent Doppler lidar (CDL) network over China to verify the Level 2B (L2B) products from Aeolus. By the simultaneous wind measurements with CDLs at 17 stations, the L2B products from Aeolus are compared with those from CDLs. To our knowledge, the VAL-OUC campaign is the most extensive so far between CDLs and Aeolus in the lower troposphere for different atmospheric scenes. The vertical velocity impact on the HLOS retrieval from Aeolus is evaluated.
Thomas Flament, Dimitri Trapon, Adrien Lacour, Alain Dabas, Frithjof Ehlers, and Dorit Huber
Atmos. Meas. Tech., 14, 7851–7871, https://doi.org/10.5194/amt-14-7851-2021, https://doi.org/10.5194/amt-14-7851-2021, 2021
Short summary
Short summary
This paper presents the main algorithms of the Aeolus Level 2 aerosol optical properties product. The processing chain was developed under contract with ESA.
We show that the ALADIN instrument, although primarily designed to retrieve atmospheric winds, is also able to provide valuable information about aerosol and cloud optical properties. The algorithms are detailed, and validation on simulated and real examples is shown.
Fabian Weiler, Michael Rennie, Thomas Kanitz, Lars Isaksen, Elena Checa, Jos de Kloe, Ngozi Okunde, and Oliver Reitebuch
Atmos. Meas. Tech., 14, 7167–7185, https://doi.org/10.5194/amt-14-7167-2021, https://doi.org/10.5194/amt-14-7167-2021, 2021
Short summary
Short summary
This paper summarizes the identification and correction of one of the most important systematic error sources for the wind measurements of the ESA satellite Aeolus. It depicts the effects of small temperature variations in the primary telescope mirror on the quality of the wind products and describes the approach to correct for it in the near-real-time processing. Moreover, the performance of the correction approach is assessed, and alternative approaches are discussed.
Oliver Lux, Christian Lemmerz, Fabian Weiler, Thomas Kanitz, Denny Wernham, Gonçalo Rodrigues, Andrew Hyslop, Olivier Lecrenier, Phil McGoldrick, Frédéric Fabre, Paolo Bravetti, Tommaso Parrinello, and Oliver Reitebuch
Atmos. Meas. Tech., 14, 6305–6333, https://doi.org/10.5194/amt-14-6305-2021, https://doi.org/10.5194/amt-14-6305-2021, 2021
Short summary
Short summary
The work assesses the frequency stability of the laser transmitters on board Aeolus and discusses its influence on the quality of the global wind data. Excellent frequency stability of the space lasers is evident, although enhanced frequency noise occurs at certain locations along the orbit due to micro-vibrations that are introduced by the satellite’s reaction wheels. The study elaborates on this finding and investigates the extent to which the enhanced frequency noise increases the wind error.
Anne Martin, Martin Weissmann, Oliver Reitebuch, Michael Rennie, Alexander Geiß, and Alexander Cress
Atmos. Meas. Tech., 14, 2167–2183, https://doi.org/10.5194/amt-14-2167-2021, https://doi.org/10.5194/amt-14-2167-2021, 2021
Short summary
Short summary
This study provides an overview of validation activities to determine the Aeolus HLOS wind errors and to understand the biases by investigating possible dependencies and testing bias correction approaches. To ensure meaningful validation statistics, collocated radiosondes and two different global NWP models, the ECMWF IFS and the ICON model (DWD), are used as reference data. To achieve an estimate for the Aeolus instrumental error the representativeness errors for the comparisons are evaluated.
Cited articles
Anderson, P. C., Rich, F. J., and Borisov, S.: Mapping the South Atlantic
Anomaly continuously over 27 years, J. Atmos.
Sol.-Terr. Phy., 177, 237–246,
https://doi.org/10.1016/j.jastp.2018.03.015, 2018.
Andersson, E.: Statement of Guidance for Global Numerical Weather Prediction
(NWP), World Meteorological Society, available at: https://docplayer.net/194586713-Statement-of-guidance-for-global-numerical-weather-prediction-nwp.html (last access: 26 July 2021), 2018.
Ansmann, A., Wandinger, U., Rille, O. L., Lajas, D., and Straume, A. G.:
Particle backscatter and extinction profiling with the spaceborne
high-spectral-resolution Doppler lidar ALADIN: methodology and simulations,
Appl. Opt., AO, 46, 6606–6622, https://doi.org/10.1364/AO.46.006606, 2007.
Bardoux, A., Penquer, A., Gilard, O., Ecoffet, R., and Auvergne, M.:
Radiation effects on image sensors, in: International Conference on Space
Optics – ICSO 2012, International Conference on Space Optics, Ajaccio, Corsica, France, 9–12 October 2012, 105640M, https://doi.org/10.1117/12.2309026, 2017.
Bertaux, J. L., Kyrölä, E., Fussen, D., Hauchecorne, A., Dalaudier, F., Sofieva, V., Tamminen, J., Vanhellemont, F., Fanton d'Andon, O., Barrot, G., Mangin, A., Blanot, L., Lebrun, J. C., Pérot, K., Fehr, T., Saavedra, L., Leppelmeier, G. W., and Fraisse, R.: Global ozone monitoring by occultation of stars: an overview of GOMOS measurements on ENVISAT, Atmos. Chem. Phys., 10, 12091–12148, https://doi.org/10.5194/acp-10-12091-2010, 2010.
Burrows, J. P., Weber, M., Buchwitz, M., Rozanov, V.,
Ladstätter-Weißenmayer, A., Richter, A., DeBeek, R., Hoogen, R.,
Bramstedt, K., Eichmann, K.-U., Eisinger, M., and Perner, D.: The Global
Ozone Monitoring Experiment (GOME): Mission Concept and First Scientific
Results, J. Atmos. Sci., 56, 151–175,
https://doi.org/10.1175/1520-0469(1999)056<0151:TGOMEG>2.0.CO;2, 1999.
Bush, N., Hall, D., Holland, A., Burgon, R., Murray, N., Gow, J., Soman, M.,
Jordan, D., Demers, R., Harding, L., Hoenk, M., Michaels, D., Nemati, B.,
and Peddada, P.: The impact of radiation damage on photon counting with an
EMCCD for the WFIRST-AFTA coronagraph, in: Techniques and Instrumentation
for Detection of Exoplanets VII, Techniques and Instrumentation for
Detection of Exoplanets VII, San Diego, California, United States, 11 September 2015, 96050E, https://doi.org/10.1117/12.2189818,
2015.
Capua, F. D., Campajola, M., Fiore, D., Gasparini, L., Sarnelli, E., and
Aloisio, A.: Investigation of random telegraph signal in two junction
layouts of proton irradiated CMOS SPADs, Sci. Rep., 11, 8580,
https://doi.org/10.1038/s41598-021-87962-w, 2021.
Chanin, M. L., Garnier, A., Hauchecorne, A., and Porteneuve, J.: A Doppler
lidar for measuring winds in the middle atmosphere, Geophys. Res. Lett., 16, 1273–1276,
https://doi.org/10.1029/GL016i011p01273, 1989.
Courrèges-Lacoste, G. B., Arcioni, M., Meijer, Y., Bézy, J.-L.,
Bensi, P., and Langen, J.: Sentinel-4: the geostationary component of the
GMES atmosphere monitoring missions, in: International Conference on Space
Optics – ICSO 2008, International Conference on Space Optics, Toulouse, France, 14–17 October 2008, 105661Y, https://doi.org/10.1117/12.2308287, 2017.
de Bruijne, J. H. J.: Science performance of Gaia, ESA's space-astrometry
mission, Astrophys. Space Sci., 341, 31–41,
https://doi.org/10.1007/s10509-012-1019-4, 2012.
e2V Technologies: Dark Signal and Clock-Induced Charge in L3Vision CCD
Sensors, Chelmsford, United Kingdom, available at: https://www.teledyne-e2v.com/content/uploads/2015/04/a1a-low-light_tn4_3_v1.pdf (last access: 12 November 2020), 2015.
ESA: ADM-Aeolus Science Report, European Space Agency, SP-1311, available at: https://earth.esa.int/documents/10174/1590943/AEOL002.pdf (last access: 12 November 2020), ISBN
978-92-9221-404-3, ISSN 0379-6566, 2008.
Feynman, J. and Gabriel, S. B.: On space weather consequences and
predictions, J. Geophys. Res.-Space, 105, 10543–10564, https://doi.org/10.1029/1999JA000141, 2000.
Flamant, P., Cuesta, J., Denneulin, M.-L., Dabas, A., and Huber, D.:
ADM-Aeolus retrieval algorithms for aerosol and cloud products, Tellus A, 60,
273–288, https://doi.org/10.1111/j.1600-0870.2007.00287.x, 2008.
Flesia, C. and Korb, C. L.: Theory of the double-edge molecular technique
for Doppler lidar wind measurement, Appl. Opt., 38, 432–440,
https://doi.org/10.1364/AO.38.000432, 1999.
Gilard, O., Boatella-Polo, C., Dolado-Perez, J.-C., Auvergne, M., Quadri,
G., and Boutillier, M.: CoRoT Satellite: Analysis of the In-Orbit CCD Dark
Current Degradation, IEEE T. Nucl. Sci., 57, 1644–1653,
https://doi.org/10.1109/TNS.2010.2044048, 2010.
Goiffon, V., Hopkinson, G. R., Magnan, P., Bernard, F., Rolland, G., and
Saint-Pe, O.: Multilevel RTS in Proton Irradiated CMOS Image Sensors
Manufactured in a Deep Submicron Technology, IEEE T. Nucl. Sci., 56, 2132–2141,
https://doi.org/10.1109/TNS.2009.2014759, 2009.
Hopkins, I. H. and Hopkinson, G. R.: Random telegraph signals from
proton-irradiated CCDs, IEEE T. Nucl. Sci., 40, 1567–1574, https://doi.org/10.1109/23.273552,
1993.
Hopkinson, G. R., Dale, C. J., and Marshall, P. W.: Proton effects in
charge-coupled devices, IEEE T. Nucl. Sci., 43, 614–627, https://doi.org/10.1109/23.490905,
1996.
Irgang, T. D., Hays, P. B., and Skinner, W. R.: Two-channel direct-detection
Doppler lidar employing a charge-coupled device as a detector, Appl. Opt., 41, 1145–1155, https://doi.org/10.1364/AO.41.001145, 2002.
Janesick, J. R.: Scientific Charge-coupled Devices, SPIE Press, 936 pp., ISBN 978-0-8194-3698-6,
2001.
Jones, M. C., Marron, J. S., and Sheather, S. J.: A Brief Survey of
Bandwidth Selection for Density Estimation, J. Am.
Stat. Assoc., 91, 401–407,
https://doi.org/10.1080/01621459.1996.10476701, 1996.
Kanitz, T., Ciapponi, A., Mondello, A., D'Ottavi, A., Mateo, A. B., Straume,
A.-G., Voland, C., Bon, D., Checa, E., Alvarez, E., Bellucci, I., Carmo, J.
P. D., Brewster, J., Marshall, J., Schillinger, M., Hannington, M., Rennie,
M., Reitebuch, O., Lecrenier, O., Bravetti, P., Sacchieri, V., Sanctis, V.
D., Lefebvre, A., Parrinello, T., and Wernham, D.: ESA's Lidar Missions
Aeolus and EarthCARE, EPJ Web Conf., 237, 01006,
https://doi.org/10.1051/epjconf/202023701006, 2020.
Keckhut, P., Hauchecorne, A., Blanot, L., Hocke, K., Godin-Beekmann, S., Bertaux, J.-L., Barrot, G., Kyrölä, E., van Gijsel, J. A. E., and Pazmino, A.: Mid-latitude ozone monitoring with the GOMOS-ENVISAT experiment version 5: the noise issue, Atmos. Chem. Phys., 10, 11839–11849, https://doi.org/10.5194/acp-10-11839-2010, 2010.
Keogh, E. J., Chu, S., Hart, D., and Pazzani, M. J.: An Online Algorithm for
Segmenting Time Series, in: Proceedings of the 2001 IEEE International
Conference on Data Mining, USA, 29 November–2 December 2001, 289–296, 2001.
Kimble, R. A., Goudfrooij, P., and Gilliland, R. L.: Radiation damage
effects on the CCD detector of the space telescope imaging spectrograph, in:
Proceedings of SPIE – The International Society for Optical Engineering, Munich, Germany, 28 July 2000,
532–545, https://doi.org/10.1117/12.393973, 2000.
Liu, B., Li, Y., Wen, L., Zhou, D., Feng, J., Zhang, X., Cai, Y., Fu, J.,
Chen, J., and Guo, Q.: Study of dark current random telegraph signal in
proton-irradiated backside illuminated CMOS image sensors, Results
Phys., 19, 103443, https://doi.org/10.1016/j.rinp.2020.103443, 2020.
Lux, O., Wernham, D., Bravetti, P., McGoldrick, P., Lecrenier, O., Riede,
W., D'Ottavi, A., Sanctis, V. D., Schillinger, M., Lochard, J., Marshall,
J., Lemmerz, C., Weiler, F., Mondin, L., Ciapponi, A., Kanitz, T., Elfving,
A., Parrinello, T., and Reitebuch, O.: High-power and frequency-stable
ultraviolet laser performance in space for the wind lidar on Aeolus, Opt.
Lett., 45, 1443–1446, https://doi.org/10.1364/OL.387728, 2020.
Mackay, C. D.: Charge-Coupled Devices in Astronomy, Annu. Rev. Astron.
Astrophys., 24, 255–283,
https://doi.org/10.1146/annurev.aa.24.090186.001351, 1986.
Marksteiner, U.: Airborne wind lidar observations for the validation of the
ADM-Aeolus instrument, PhD thesis, TUM München, 180 pp., available at: https://mediatum.ub.tum.de/doc/1136781/1136781.pdf (last access: 12 November 2020), 2013.
Markus, T., Neumann, T., Martino, A., Abdalati, W., Brunt, K., Csatho, B.,
Farrell, S., Fricker, H., Gardner, A., Harding, D., Jasinski, M., Kwok, R.,
Magruder, L., Lubin, D., Luthcke, S., Morison, J., Nelson, R.,
Neuenschwander, A., Palm, S., Popescu, S., Shum, C., Schutz, B. E., Smith,
B., Yang, Y., and Zwally, J.: The Ice, Cloud, and land Elevation Satellite-2
(ICESat-2): Science requirements, concept, and implementation, Remote
Sens. Environ., 190, 260–273,
https://doi.org/10.1016/j.rse.2016.12.029, 2017.
Massey, R., Schrabback, T., Cordes, O., Marggraf, O., Israel, H., Miller,
L., Hall, D., Cropper, M., Prod'homme, T., and Niemi, S. M.: An improved
model of charge transfer inefficiency and correction algorithm for the
Hubble Space Telescope, Mon. Not. R. Astron. Soc., 439, 887–907,
https://doi.org/10.1093/mnras/stu012, 2014.
McKay, J. A.: Modeling of direct detection Doppler wind lidar. II. The
fringe imaging technique, Appl. Opt., 37, 6487–6493,
https://doi.org/10.1364/AO.37.006487, 1998.
Nasuddin, K. A., Abdullah, M., and Abdul Hamid, N. S.: Characterization of the South Atlantic Anomaly, Nonlin. Processes Geophys., 26, 25–35, https://doi.org/10.5194/npg-26-25-2019, 2019.
Noel, V., Chepfer, H., Hoareau, C., Reverdy, M., and Cesana, G.: Effects of solar activity on noise in CALIOP profiles above the South Atlantic Anomaly, Atmos. Meas. Tech., 7, 1597–1603, https://doi.org/10.5194/amt-7-1597-2014, 2014.
Nuns, T., Quadri, G., David, J.-P., and Gilard, O.: Annealing of
Proton-Induced Random Telegraph Signal in CCDs, IEEE T. Nucl. Sci., 54, 1120–1128,
https://doi.org/10.1109/TNS.2007.902351, 2007.
Popowicz, A.: Analysis of Dark Current in BRITE Nanostellite CCD Sensors,
Sensors (Basel), 18, 479, https://doi.org/10.3390/s18020479, 2018.
Reitebuch, O.: The Spaceborne Wind Lidar Mission ADM-Aeolus, in: Atmospheric
Physics: Background – Methods – Trends, edited by: Schumann, U., Springer,
Berlin, Heidelberg, 815–827,
https://doi.org/10.1007/978-3-642-30183-4_49, 2012a.
Reitebuch, O.: Wind Lidar for Atmospheric Research, in: Atmospheric Physics:
Background – Methods – Trends, edited by: Schumann, U., Berlin, Heidelberg,
487–507, https://doi.org/10.1007/978-3-642-30183-4_49,
2012b.
Reitebuch, O., Lemmerz, C., Nagel, E., Paffrath, U., Durand, Y., Endemann,
M., Fabre, F., and Chaloupy, M.: The Airborne Demonstrator for the
Direct-Detection Doppler Wind Lidar ALADIN on ADM-Aeolus. Part I: Instrument
Design and Comparison to Satellite Instrument, J. Atmos. Oceanic Technol.,
26, 2501–2515, https://doi.org/10.1175/2009JTECHA1309.1, 2009.
Reitebuch, O., Huber, D., and Nikolaus, I.: ADM-Aeolus, Algorithm
Theoretical Basis Document (ATBD), Level1B Products, DLR Oberpfaffenhofen, available at: https://earth.esa.int/aos/AeolusCalVal (last access: 12 November 2020), 2018.
Reitebuch, O., Lemmerz, C., Lux, O., Marksteiner, U., Rahm, S., Weiler, F.,
Witschas, B., Meringer, M., Schmidt, K., Huber, D., Nikolaus, I., Geiss, A.,
Vaughan, M., Dabas, A., Flament, T., Stieglitz, H., Isaksen, L., Rennie, M.,
Kloe, J. de, Marseille, G.-J., Stoffelen, A., Wernham, D., Kanitz, T.,
Straume, A.-G., Fehr, T., Bismarck, J. von, Floberghagen, R., and
Parrinello, T.: Initial Assessment of the Performance of the First Wind
Lidar in Space on Aeolus, EPJ Web Conf., 237, 01010,
https://doi.org/10.1051/epjconf/202023701010, 2020.
Rennie, M. and Isaksen, L.: The NWP impact of Aeolus Level-2B Winds at
ECMWF, ECMWF Technical Memoranda, https://doi.org/10.21957/alift7mhr, 2020.
Rennie, M., Tan, D., Poli, P., Dabas, A., De Kloe, J., Marseille, G.-J., and
Stoffelen, A.: Aeolus Level-2B Algorithm Theoretical Basis Document, ECMWF, available at:
https://earth.esa.int/aos/AeolusCalVal (last access: 12 November 2020), 2020.
Schenkeveld, V. M. E., Jaross, G., Marchenko, S., Haffner, D., Kleipool, Q. L., Rozemeijer, N. C., Veefkind, J. P., and Levelt, P. F.: In-flight performance of the Ozone Monitoring Instrument, Atmos. Meas. Tech., 10, 1957–1986, https://doi.org/10.5194/amt-10-1957-2017, 2017.
Smith, D. R., Holland, A. D., and Hutchinson, I. B.: Random telegraph
signals in charge coupled devices, Nuclear Instruments and Methods in
Physics Research Section A: Accelerators, Spectrometers, Detectors and
Associated Equipment, 530, 521–535,
https://doi.org/10.1016/j.nima.2004.03.210, 2004.
Srour, J. R. and Palko, J. W.: Displacement Damage Effects in Irradiated
Semiconductor Devices, IEEE T. Nucl. Sci., 60, 1740–1766,
https://doi.org/10.1109/TNS.2013.2261316, 2013.
Stoffelen, A., Pailleux, J., Källén, E., Vaughan, J. M., Isaksen,
L., Flamant, P., Wergen, W., Andersson, E., Schyberg, H., Culoma, A.,
Meynart, R., Endemann, M., and Ingmann, P.: The Atmospheric Dynamics Mission
for global wind field measurement, B. Am. Meteorol. Soc., 86, 73–88,
https://doi.org/10.1175/BAMS-86-1-73, 2005.
Straume, A. G.: Aeolus Sensor and Product Description, European Space Agency, available at: https://earth.esa.int/pi/esa?type=file&table=aotarget&cmd=image&alias=Aeolus_Sensor_Processing_and_Product_Description (last access: 12 November 2020), 2018.
Sun, X., Jester, P., Palm, S., Abshire, J., Spinhirne, J., and Krainak, M.:
In orbit performance of Si avalanche photodiode single photon counting
modules (SPCM) in the Geoscience Laser Altimeter System on ICESat,
Proceedings of SPIE – The International Society for Optical Engineering,
6372, https://doi.org/10.1117/12.685539, 2006.
Truong, C., Oudre, L., and Vayatis, N.: Selective review of offline change
point detection methods, Signal Process., 167, 107299,
https://doi.org/10.1016/j.sigpro.2019.107299, 2020.
Virmontois, C., Goiffon, V., Magnan, P., Saint-Pe, O., Girard, S., Petit,
S., Rolland, G., and Bardoux, A.: Total Ionizing Dose Versus Displacement
Damage Dose Induced Dark Current Random Telegraph Signals in CMOS Image
Sensors, IEEE T. Nucl. Sci., 58, 3085–3094, https://doi.org/10.1109/TNS.2011.2171005, 2011.
Virmontois, C., Goiffon, V., Robbins, M. S., Tauziède, L., Geoffray, H.,
Raine, M., Girard, S., Gilard, O., Magnan, P., and Bardoux, A.: Dark Current
Random Telegraph Signals in Solid-State Image Sensors, IEEE T. Nucl. Sci., 60, 4323–4331,
https://doi.org/10.1109/TNS.2013.2290236, 2013.
Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Reddy, T.,
Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van
der Walt, S. J., Brett, M., Wilson, J., Millman, K. J., Mayorov, N., Nelson,
A. R. J., Jones, E., Kern, R., Larson, E., Carey, C. J., Polat, İ.,
Feng, Y., Moore, E. W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman,
R., Henriksen, I., Quintero, E. A., Harris, C. R., Archibald, A. M.,
Ribeiro, A. H., Pedregosa, F., and van Mulbregt, P.: SciPy 1.0: fundamental
algorithms for scientific computing in Python, Nat. Methods, 17, 261–272,
https://doi.org/10.1038/s41592-019-0686-2, 2020.
Waltham, N.: CCD and CMOS sensors, ISSI Scientific Reports Series, 9,
391–408, 2010.
Wilkins, A. N., McElwain, M. W., Norton, T. J., Rauscher, B. J., Rothe, J.
F., Malatesta, M., Hilton, G. M., Bubeck, J. R., Grady, C. A., and Lindler,
D. J.: Characterization of a photon counting EMCCD for space-based high
contrast imaging spectroscopy of extrasolar planets, in: High Energy,
Optical, and Infrared Detectors for Astronomy VI, High Energy, Optical, and
Infrared Detectors for Astronomy VI, 91540C,
https://doi.org/10.1117/12.2055346, 2014.
Winker, D. M., Vaughan, M. A., Omar, A., Hu, Y., Powell, K. A., Liu, Z.,
Hunt, W. H., and Young, S. A.: Overview of the CALIPSO Mission and CALIOP
Data Processing Algorithms, J. Atmos. Oceanic Technol., 26, 2310–2323,
https://doi.org/10.1175/2009JTECHA1281.1, 2009.
Woo, J.-M., Park, H.-H., Hong, S.-M., Chung, I.-Y., Min, H. S., and Park, Y.
J.: Statistical Noise Analysis of CMOS Image Sensors in Dark Condition, IEEE T. Electron Dev., 56,
2481–2488, https://doi.org/10.1109/TED.2009.2030981, 2009.
Short summary
This paper reports on dark current signal anomalies of the detectors used on board the ESA's Earth Explorer satellite Aeolus during the first 1.5 years in orbit. After introducing sophisticated algorithms to classify dark current anomalies according to their characteristics, the impact of the different kinds of anomalies on wind measurements is discussed. In addition, mitigation approaches for the wind retrieval are presented and potential root causes are discussed.
This paper reports on dark current signal anomalies of the detectors used on board the ESA's...