Articles | Volume 14, issue 10
https://doi.org/10.5194/amt-14-6821-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/amt-14-6821-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Gravity wave instability structures and turbulence from more than 1.5 years of OH* airglow imager observations in Slovenia
René Sedlak
CORRESPONDING AUTHOR
Institute of Physics, University of Augsburg, Augsburg, Germany
Patrick Hannawald
Institute of Physics, University of Augsburg, Augsburg, Germany
German Remote Sensing Data Center, German Aerospace Center,
Oberpfaffenhofen, Germany
Carsten Schmidt
German Remote Sensing Data Center, German Aerospace Center,
Oberpfaffenhofen, Germany
Sabine Wüst
German Remote Sensing Data Center, German Aerospace Center,
Oberpfaffenhofen, Germany
Michael Bittner
Institute of Physics, University of Augsburg, Augsburg, Germany
German Remote Sensing Data Center, German Aerospace Center,
Oberpfaffenhofen, Germany
Samo Stanič
Center for Astrophysics and Cosmology, University of Nova Gorica,
Ajdovščina, Slovenia
Related authors
René Sedlak, Andreas Welscher, Patrick Hannawald, Sabine Wüst, Rainer Lienhart, and Michael Bittner
Atmos. Meas. Tech., 16, 3141–3153, https://doi.org/10.5194/amt-16-3141-2023, https://doi.org/10.5194/amt-16-3141-2023, 2023
Short summary
Short summary
We show that machine learning can help in classifying images of the OH* airglow, a thin layer in the middle atmosphere (ca. 86 km height) emitting infrared radiation, in an efficient way. By doing this,
dynamicepisodes of strong movement in the OH* airglow caused predominantly by waves can be extracted automatically from large data sets. Within these dynamic episodes, turbulent wave breaking can also be found. We use these observations of turbulence to derive the energy released by waves.
René Sedlak, Alexandra Zuhr, Carsten Schmidt, Sabine Wüst, Michael Bittner, Goderdzi G. Didebulidze, and Colin Price
Atmos. Meas. Tech., 13, 5117–5128, https://doi.org/10.5194/amt-13-5117-2020, https://doi.org/10.5194/amt-13-5117-2020, 2020
Short summary
Short summary
Gravity wave (GW) activity in the UMLT in the period range 6-480 min is calculated by applying a wavelet analysis to nocturnal temperature time series derived from OH* airglow spectrometers. We analyse measurements from eight different locations at different latitudes.
GW activity shows strong period dependence. We find hardly any seasonal variability for periods below 60 min and a semi-annual cycle for periods longer than 60 min that evolves into an annual cycle around a period of 200 min.
Thomas Trickl, Hannes Vogelmann, Michael Bittner, Gerald Nedoluha, Carsten Schmidt, Wolfgang Steinbrecht, and Sabine Wüst
EGUsphere, https://doi.org/10.5194/egusphere-2025-1952, https://doi.org/10.5194/egusphere-2025-1952, 2025
This preprint is open for discussion and under review for Atmospheric Measurement Techniques (AMT).
Short summary
Short summary
A powerful lidar system has been installed at the high-altitude observatory Schneefernerhaus (2575 m) to allow for atmospheric temperature measurements up to more than 80 km within just one hour. The temperature profiles are calibrated by values obtained from chemiluminscence of the hydroxyl radical around 86 km. The temperature profiles are successfully compared with satellite and lidar data.
Stefan Noll, Carsten Schmidt, Patrick Hannawald, Wolfgang Kausch, and Stefan Kimeswenger
Geosci. Model Dev., 18, 4353–4398, https://doi.org/10.5194/gmd-18-4353-2025, https://doi.org/10.5194/gmd-18-4353-2025, 2025
Short summary
Short summary
Non-thermal emission from chemical reactions in the Earth's middle und upper atmosphere strongly contributes to the brightness of the night sky below about 2.3 µm. The new Paranal Airglow Line And Continuum Emission model calculates the emission spectrum and its variability with an unprecedented accuracy. Relying on a large spectroscopic data set from astronomical spectrographs and theoretical molecular/atomic data, this model is valuable for airglow research and astronomical observatories.
Sabine Wüst, Lisa Küchelbacher, Franziska Trinkl, and Michael Bittner
Atmos. Meas. Tech., 18, 1591–1607, https://doi.org/10.5194/amt-18-1591-2025, https://doi.org/10.5194/amt-18-1591-2025, 2025
Short summary
Short summary
Information on the energy transported by atmospheric gravity waves (GWs) is crucial for improving atmosphere models. Most space-based studies report the potential energy. We use Aeolus wind data to estimate the kinetic energy (density). However, the data quality is a challenge for such analyses, as the accuracy of the data is in the range of typical GW amplitudes. We find a temporal coincidence between enhanced or breaking planetary waves and enhanced gravity wave kinetic energy density.
Stefan Noll, John M. C. Plane, Wuhu Feng, Konstantinos S. Kalogerakis, Wolfgang Kausch, Carsten Schmidt, Michael Bittner, and Stefan Kimeswenger
Atmos. Chem. Phys., 24, 1143–1176, https://doi.org/10.5194/acp-24-1143-2024, https://doi.org/10.5194/acp-24-1143-2024, 2024
Short summary
Short summary
The Earth's nighttime radiation in the range from the near-UV to the near-IR mainly originates between 75 and 105 km and consists of lines of different species, which are important indicators of the chemistry and dynamics at these altitudes. Based on astronomical spectra, we have characterised the structure and variability of a pseudo-continuum of a high number of faint lines and discovered a new emission process in the near-IR. By means of simulations, we identified HO2 as the likely emitter.
Carsten Schmidt, Lisa Küchelbacher, Sabine Wüst, and Michael Bittner
Atmos. Meas. Tech., 16, 4331–4356, https://doi.org/10.5194/amt-16-4331-2023, https://doi.org/10.5194/amt-16-4331-2023, 2023
Short summary
Short summary
Two identical instruments in a parallel setup were used to observe the mesospheric OH airglow for more than 10 years (2009–2020) at 47.42°N, 10.98°E. This allows unique analyses of data quality aspects and their impact on the obtained results. During solar cycle 24 the influence of the sun was strong (∼6 K per 100 sfu). A quasi-2-year oscillation (QBO) of ±1 K is observed mainly during the maximum of the solar cycle. Unlike the stratospheric QBO the variation has a period of or below 24 months.
René Sedlak, Andreas Welscher, Patrick Hannawald, Sabine Wüst, Rainer Lienhart, and Michael Bittner
Atmos. Meas. Tech., 16, 3141–3153, https://doi.org/10.5194/amt-16-3141-2023, https://doi.org/10.5194/amt-16-3141-2023, 2023
Short summary
Short summary
We show that machine learning can help in classifying images of the OH* airglow, a thin layer in the middle atmosphere (ca. 86 km height) emitting infrared radiation, in an efficient way. By doing this,
dynamicepisodes of strong movement in the OH* airglow caused predominantly by waves can be extracted automatically from large data sets. Within these dynamic episodes, turbulent wave breaking can also be found. We use these observations of turbulence to derive the energy released by waves.
Sabine Wüst, Michael Bittner, Patrick J. Espy, W. John R. French, and Frank J. Mulligan
Atmos. Chem. Phys., 23, 1599–1618, https://doi.org/10.5194/acp-23-1599-2023, https://doi.org/10.5194/acp-23-1599-2023, 2023
Short summary
Short summary
Ground-based OH* airglow measurements have been carried out for almost 100 years. Advanced detector technology has greatly simplified the automatic operation of OH* airglow observing instruments and significantly improved the temporal and/or spatial resolution. Studies based on long-term measurements or including a network of instruments are reviewed, especially in the context of deriving gravity wave properties. Scientific and technical challenges for the next few years are described.
Asta Gregorič, Luka Drinovec, Irena Ježek, Janja Vaupotič, Matevž Lenarčič, Domen Grauf, Longlong Wang, Maruška Mole, Samo Stanič, and Griša Močnik
Atmos. Chem. Phys., 20, 14139–14162, https://doi.org/10.5194/acp-20-14139-2020, https://doi.org/10.5194/acp-20-14139-2020, 2020
Short summary
Short summary
We present a new method for the determination of highly time-resolved and source-separated black carbon emission rates. The atmospheric dynamics is quantified using the atmospheric radon concentration. Different intensity and daily dynamics of black carbon emission rates for two different environments are presented: urban and rural area. The method can be used to assess the efficiency of pollution mitigation measures, thereby avoiding the influence of variable meteorology.
Sabine Wüst, Michael Bittner, Jeng-Hwa Yee, Martin G. Mlynczak, and James M. Russell III
Atmos. Meas. Tech., 13, 6067–6093, https://doi.org/10.5194/amt-13-6067-2020, https://doi.org/10.5194/amt-13-6067-2020, 2020
Short summary
Short summary
With airglow spectrometers, the temperature in the upper mesosphere/lower thermosphere can be derived each night. The data allow to estimate the amount of energy which is transported by small-scale atmospheric waves, known as gravity waves. In order to do this, information about the Brunt–Väisälä frequency and its evolution during the year is necessary. This is provided here for low and midlatitudes based on 18 years of satellite data.
René Sedlak, Alexandra Zuhr, Carsten Schmidt, Sabine Wüst, Michael Bittner, Goderdzi G. Didebulidze, and Colin Price
Atmos. Meas. Tech., 13, 5117–5128, https://doi.org/10.5194/amt-13-5117-2020, https://doi.org/10.5194/amt-13-5117-2020, 2020
Short summary
Short summary
Gravity wave (GW) activity in the UMLT in the period range 6-480 min is calculated by applying a wavelet analysis to nocturnal temperature time series derived from OH* airglow spectrometers. We analyse measurements from eight different locations at different latitudes.
GW activity shows strong period dependence. We find hardly any seasonal variability for periods below 60 min and a semi-annual cycle for periods longer than 60 min that evolves into an annual cycle around a period of 200 min.
Cited articles
Adams, G. W., Peterson, A. W., Brosnahan, J. W., and Neuschaefer, J. W.:
Radar and optical observations of mesospheric wave activity during the lunar
eclipse of 6 July 1982, J. Atmos. Terr. Phys., 50, 11–20, 1988.
Andreassen, Ø., Wasberg, C. E., Fritts, D. C., and Isler, J. R.: Gravity
wave breaking in two and three dimensions 1. Model description and
comparison of two-dimensional evolutions, J. Geophys. Res., 99, 8095–8108,
1994.
Bacmeister, J. T. and Schoeberl, M. R.: Breakdown of vertically
propagating two-dimensional gravity waves forced by orography, J. Atmos.
Sci., 46, 2109–2134, 1989.
Baker, D. J. and Stair, A. T.: Rocket Measurements of the Altitude
Distributions of the Hydroxyl Airglow, Phys. Scripta, 37, 611–622,
https://doi.org/10.1088/0031-8949/37/4/021, 1988.
Baumgarten, G. and Fritts, D. C.: Quantifying Kelvin-Helmholtz instability
dynamics observed in noctilucent clouds: 1. Methods and observations, J.
Geophys. Res.-Atmos., 119, 9324–9337, https://doi.org/10.1002/2014JD021832, 2014.
Becker, E. and Vadas, S. L.: Secondary Gravity Waves in the Winter
Mesosphere: Results From a High-Resolution Global Circulation Model, J.
Geophys. Res.-Atmos., 123, 2605–2627,
https://doi.org/10.1002/2017JD027460, 2018.
Beldon, C. L. and Mitchell, N. J.: Gravity waves in the mesopause region
observed by meteor radar, 2: Climatologies of gravity waves in the Antarctic
and Arctic, J. Atmos. Sol.-Terr. Phy., 71, 875–884,
https://doi.org/10.1016/j.jastp.2009.03.009, 2009.
Bittner, M., Offermann, D., and Graef, H. H.: Mesopause temperature
variability above a midlatitude station in Europe, J. Geophys. Res.,
105, 2045–2058, 2000.
Bossert, K., Kruse, C. G., Heale, C. J., Fritts, D. C., Williams, B. P.,
Snively, J. B., Pautet, P.-D., and Taylor, M. J.: . Secondary gravity wave
generation over New Zealand during the DEEPWAVE campaign, J.
Geophys. Res.-Atmos., 122, 7834–7850,
https://doi.org/10.1002/2016JD026079, 2017.
Browning, K. A.: Structure of the atmosphere in the vicinity of
large-amplitude Kelvin–Helmholtz billows, Q. J. Roy. Meteor. Soc., 97,
283–299, 1971.
Chau, J. L., Urco, J. M., Avsarkisov, V., Vierinen, J. P., Latteck, R.,
Hall, C. M., and Tsutsumi, M.: Four-Dimensional Quantification of
Kelvin-Helmholtz Instabilities in the Polar Summer Mesosphere Using
Volumetric Radar Imaging, Geophys. Res. Let., 47, e2019GL086081,
https://doi.org/10.1029/2019GL086081, 2020.
de la Cámara, A., Lott, F., and Abalos, M.: Climatology of the middle
atmosphere in LMDz: Impact of source-related parameterizations of gravity
wave drag, J. Adv. Model. Earth Syst., 8, 1507–1525,
https://doi.org/10.1002/2016MS000753, 2016.
Espy, P. J. and Stegman, J.: Trends and variability of mesospheric
temperature at high-latitudes, Phys. Chem. Earth, 27, 543–553, 2002.
Espy, P. J., Hibbins, R. E., Jones, G. O. L., Riggin, D. M., and Fritts, D.
C.: Rapid, large-scale temperature changes in the polar mesosphere and their
relationship to meridional flows, Geophys. Res. Lett., 30,
1240, https://doi.org/10.1029/2002GL016452, 2003.
Franke, P. M. and Robinson, W. A.: Nonlinear behaviour in the propagation of
atmospheric gravity waves, J. Atmos. Sci., 56, 3010–3027, 1999.
French, W. J. R. and Burns, G. B.: The influence of large-scale
oscillations on long-term trend assessment in hydroxyl temperatures over
Davis, Antarctica, J. Atmos. Sol.-Terr. Phys., 66, 493–506,
https://doi.org/10.1016/j.jastp.2004.01.027, 2004.
Fritts, D. C. and Alexander, M. J.: Gravity wave dynamics and effects in the
middle atmosphere, Rev. Geophys., 41, 1003, https://doi.org/10.1029/2001RG000106,
2003.
Fritts, D. C., Garten, J. F., and Andreassen, Ø.: Wave breaking and
transition to turbulence in stratified shear flows, J. Atmos. Sci., 53,
1057–1085, 1996.
Fritts, D. C., Isler, J. R., Hecht, J. H., Walterscheid, R. L., and Andreassen, O.: Wave breaking signatures in sodium densities and OH nightglow.
2. Simulation of wave and instability structures, J. Geophys. Res., 102,
6669–6684, https://doi.org/10.1029/96JD01902, 1997.
Gardner, C. S., Zhao, Y., and Liu, A. Z.: Atmospheric stability and gravity
wave dissipation in the mesopause region, J. Atmos. Sol.-Terr. Phy., 64,
923–929, 2002.
Gargett, A. E.: Velcro Measurement of Turbulence Kinetic Energy Dissipation
Rate ϵ, J. Atmos. Ocean. Tech., 16, 1973–1993, 1999.
Hannawald, P., Schmidt, C., Wüst, S., and Bittner, M.: A fast SWIR imager for observations of transient features in OH airglow, Atmos. Meas. Tech., 9, 1461–1472, https://doi.org/10.5194/amt-9-1461-2016, 2016.
Hannawald, P., Schmidt, C., Sedlak, R., Wüst, S., and Bittner, M.: Seasonal and intra-diurnal variability of small-scale gravity waves in OH airglow at two Alpine stations, Atmos. Meas. Tech., 12, 457–469, https://doi.org/10.5194/amt-12-457-2019, 2019.
Hecht, J. H.: Instability layers and airglow imaging, Review of Geophysics, 42, RG1001, https://doi.org/10.1029/2003RG000131, 2004.
Hecht, J. H., Walterscheid, R. L., Fritts, D. C., Isler, J. R., Senft, D.
C., Gardner, C. S., and Franke, S. J.: Wave breaking signatures in OH
airglow and sodium densities and temperatures 1. Airglow imaging, Na lidar,
and MF radar observations, J. Geophys. Res., 102, 6655–6668, 1997.
Hecht, J. H., Fricke-Begemann, C., Walterscheid, R. L., and Höffner, J.:
Observations of the breakdown of an atmospheric gravity wave near the cold
summer mesopause at 54N, Geophys. Res. Lett., 27, 879–882,
https://doi.org/10.1029/1999GL010792, 2000.
Hecht, J. H., Wan, K., Gelinas, L. J., Fritts, D. C., Walterscheid, R. L.,
Rudy, R. J., Liu, A. Z., Franke, S. J., Vargas, F. A., Pautet, P. D.,
Taylor, M. J., and Swenson, G. R.: The life cycle of instability features
measured from the Andes Lidar Observatory over Cerro Pachon on 24 March
2012, J. Geophys. Res.-Atmos., 119, 8872–8898, 2014.
Hecht, J. H., Fritts, D. C., Gelinas, L. J., Rudy, R. J., Walterscheid, R.
L., and Liu, A. Z.: Kelvin-Helmholtz Billow Interactions and Instabilities
in the Mesosphere Over the Andes Lidar Observatory: 1. Observations, J. Geophys. Res.-Atmos., 126, e2020JD033414, https://doi.org/10.1029/2020JD033414, 2021.
Hines, C. O. and Tarasick, D. W.: On the detection and utilization of gravity
waves in airglow studies, Planet. Space Sci., 35, 851–866,
https://doi.org/10.1016/0032-0633(87)90063-8, 1987.
Hocking, W. K.: Measurement of turbulent energy dissipation rates in the
middle atmosphere by radar techniques: A review, Radio Sci., 20, 1403–1422,
1985.
Hocking, W. K.: The dynamical parameters of turbulence theory as they apply
to middle atmosphere studies, Earth Planets Space, 51, 525–541, 1999.
Hoffmann P., Becker, E., Singer, W., and Placke, M.: Seasonal variation of
mesospheric waves at northern middle and high latitudes, J. Atmos.
Sol.-Terr. Phy., 72, 1068–1079, 2010.
Holton, J. R.: The influence of gravity wave breaking on the general
circulation of the middle atmosphere, J. Atmos. Sci., 40, 2497–2507,
1983.
Holton, J. R. and Alexander, M. J.: Gravity waves in the mesosphere
generated by tropospheric convection, Tellus, 51A-B, 45–58, 1999.
Li, J., Li, T., Dou, X., Fang, X., Cao, B., She, C.-Y., Nakamura, T.,
Manson, A., Meek, C., and Thorsen, D.: Characteristics of ripple structures
revealed in OH airglow images, J. Geophys. Res.-Space, 122,
3748–3759, https://doi.org/10.1002/2016JA023538, 2017.
Li, Z., Liu, A. Z., Lu, X., Swenson, G. R., and Franke, S. J.: Gravity wave
characteristics from OH airglow imager over Maui, J. Geophys. Res., 116, D22115, https://doi.org/10.1029/2011JD015870, 2011.
Lindzen, R. S.: Turbulence and stress owing to gravity wave and tidal
breakdown, J. Geophys. Res.-Oceans, 86, 9707–9714, 1981.
Liu, G. and Shepherd, G. G.: An empirical model for the altitude of the OH
nightglow emission, Geophys. Res. Let., 33, L09805,
https://doi.org/10.1029/2005GL025297, 2006.
Lübken, F.-J.: Seasonal variation of turbulent energy dissipation rates
at high latitudes as determined by in situ measurements of neutral density
fluctuations, J. Geophys. Res., 102, 13441–13456, 1997.
Lübken, F.-J., von Zahn, U., Thrane, E. V., Blix, T., Kokin, G. A., and
Pachomov, S. V.: In situ measurements of turbulent energy dissipation rates
and eddy diffusion coefficients during MAP/WINE, J. Atmos. Terr. Phys.,
49, 763–775, 1987.
Lübken, F.-J., Rapp, M., and Hofmann, P.: Neutral air turbulence and
temperatures in the vicinity of polar mesospheric summer echoes, J. Geophys.
Res., 107, 4273, https://doi.org/10.1029/2001JD000915, 2002.
Marsh, D. R.: Chemical-Dynamical Coupling in the Mesosphere and Lower
Thermosphere, Aeronomy of the Earth's Atmosphere and Ionosphere, IAGA Special Sopron Book
Series 2, edited by: Abdu,
M. A. and Pancheva, D., Coed. Bhattacharyya, A., Springer
Science+Business Media B. V., Dordrecht, the Netherlands, https://doi.org/10.1007/978-94-007-0326-1_1, 2011.
Moreels, G., Clairemidi, J., Faivre, M., Mougin-Sisini, D., Kouahla, M. N.,
Meriwether, J. W., Lehmacher, G. A., Vidal, E., and Veliz, O.: Stereoscopic
imaging of the hydroxyl emissive layer at low latitudes, Planet. Space Sci.,
56, 1467–1479, 2008.
Mulligan, F. J., Horgan, D. F., Galligan, J. G., and Griffin, E. M.: Mesopause
temperatures and integrated band brightnesses calculated from airglow OH
emissions recorded at Maynooth (53.21N, 6.41W) during 1993, J.
Atmos. Terr. Phys. 57, 1623–1637, 1995.
Nakamura, T., Higashikawa, A., Tsuda, T., and Matsuhita, Y.: Seasonal
variations of gravity wave structures in OH airglow with a CCD imager at
Shigaraki, Earth Planets Space, 51, 897–906, 1999.
Offermann, D., Gusev, O.,
Donner, M., Forbes, J. M., Hagan, M., Mlynczak, M. G., Oberheide, J.,
Preusse, P., Schmidt, H., and Russell III, J. M.: Relative intensities of
middle atmosphere waves, J. Geophys. Res., 114, D06110,
https://doi.org/10.1029/2008JD010662, 2009.
Pautet, P. D., Taylor, M. J., Pendleton, W. R., Zhao, Y., Yuan, T., Esplin,
R., and McLain, D.: Advanced mesospheric temperature mapper for
high-latitude airglow studies, Appl. Opt., 53, 5934–5943, 2014.
Peterson, A. W.: Airglow events visible to the naked eye, Appl. Optics, 18,
3390–3393, https://doi.org/10.1364/AO.18.003390, 1979.
Peterson, A. W. and Kieffaber, L. M.: Infrared Photography of OH Airglow
Structures, Nature, 242, 321–322, 1973.
Reisin, E. R. and Scheer, J.: Vertical propagation of gravity waves
determined from zenith observations of airglow, Adv. Space Res., 27,
1743–1748, 2001.
Satomura, T. and Sato, K.: Secondary generation of gravity waves associated
with the breaking of mountain waves, J. Atmos. Sci., 56, 3847–3858,
1999.
Schmidt, C., Höppner, K., and Bittner, M.: A ground-based spectrometer
equipped with an InGaAs array for routine observations of OH(3-1) rotational
temperatures in the mesopause region, J. Atmos. Sol.-Terr. Phy., 102,
125–139, 2013.
Schmidt, C., Dunker, T., Lichtenstern, S., Scheer, J., Wüst, S., Hoppe,
U.-P., and Bittner, M.: Derivation of vertical wavelengths of gravity waves
in the MLT-region from multispectral airglow observations, J. Atmos.
Sol.-Terr. Phy., 173, 119–127, 2018.
Schmidt, C., Wüst, S., Stanic, S., and Bittner, M.: One minute mean values OH(3-1) airglow rotational temperatures from the mesopause region obtained with GRIPS 9 at Otlica, Slovenia, ndmc [data set], available at: https://ndmc.dlr.de/operational-data-products, last access: 16 October 2021.
Sedlak, R., Hannawald, P., Schmidt, C., Wüst, S., and Bittner, M.: High-resolution observations of small-scale gravity waves and turbulence features in the OH airglow layer, Atmos. Meas. Tech., 9, 5955–5963, https://doi.org/10.5194/amt-9-5955-2016, 2016.
Sedlak, R., Zuhr, A., Schmidt, C., Wüst, S., Bittner, M., Didebulidze, G. G., and Price, C.: Intra-annual variations of spectrally resolved gravity wave activity in the upper mesosphere/lower thermosphere (UMLT) region, Atmos. Meas. Tech., 13, 5117–5128, https://doi.org/10.5194/amt-13-5117-2020, 2020.
Silber, I., Price, C., Schmidt, C., Wüst, S., Bittner, M., and Pecora, E.: First ground-based observations of mesopause temperatures above the Eastern-Mediterranean Part I: Multi-day oscillations and tides, J. Atmos. Sol.-Terr. Phy., 155, 95–103, 2016.
Smith, S., Baumgardner, J., and Mendillo, M.: Evidence of mesospheric
gravity-waves generated by orographic forcing in the troposphere, Geophys.
Res. Lett., 36, L08807,
https://doi.org/10.1029/2008GL036936, 2009.
Taylor, M. J.: A review of advances in imaging techniques for measuring
short period gravity waves in the mesosphere and lower thermosphere, Adv.
Space Res., 19, 667–676, 1997.
Taylor, M. J. and Hapgood, M. A.: On the origin of ripple-type wave
structure in the OH nightglow emission, Planet. Space Sci., 38, 1421–1430,
1990.
Tuan, T. F., Hedinger, R., Silverman, S. M., and Okuda, M.: On gravity wave
induced Brunt-Vaisala oscillations, J. Geophys. Res.-Space, 84,
393–398, 1979.
Vadas, S. L. and Becker, E.: Numerical Modeling of the Excitation,
Propagation, and Dissipation of Primary and Secondary Gravity Waves during
Wintertime at McMurdo Station in the Antarctic, J. Geophys. Res.-Atmos., 123, 9326–9369, 2018.
Vadas, S. L. and Fritts, D. C.: Gravity wave radiation and mean responses to
local body forces in the atmosphere, J. Atmos. Sci., 58, 2249–2279, https://doi.org/10.1175/1520-0469(2001)058<2249:GWRAMR>2.0.CO;2, 2001.
Vadas, S. L., Zhao, J., Chu, X., and Becker, E.: The Excitation of secondary
gravity waves from local body forces: Theory and observation, J. Geophys.
Res.-Atmos., 123, 9296–9325,
https://doi.org/10.1029/2017JD027974, 2018.
Wachter, P., Schmidt, C., Wüst, S., and Bittner, M.: Spatial gravity
wave characteristics obtained from multiple OH(3-1) airglow temperature time
series, J. Atmos. Sol.-Terr. Phy., 135, 192–201, 2015.
The World Data Center for Remote Sensing of the Atmosphere: The World Data Center for Remote Sensing of the Atmosphere, https://wdc.dlr.de/, last access: 16 October 2021.
Wüst, S., Wendt, V., Schmidt, C., Lichtenstern, S., Bittner, M., Yee,
J.-H., Mlynczak, M. G., and Russell III, J. M.: Derivation of gravity wave
potential energy density from NDMC measurements, J. Atmos. Sol.-Terr. Phys.,
138, 32–46, https://doi.org/10.1016/j.jastp.2015.12.003, 2016.
Wüst, S., Schmidt, C., Bittner, M., Silber, I., Price, C., Yee, J.-H.,
Mlynczak, M. G., and Russel III, J. M.: First ground-based observations of
mesopause temperatures above the Eastern-Mediterranean Part II:
OH*-climatology and gravity wave activity, J. Atmos. Sol.-Terr. Phys., 155,
104–111, 2017a.
Wüst, S., Bittner, M., Yee, J.-H., Mlynczak, M. G., and Russell III, J. M.: Variability of the Brunt–Väisälä frequency at the OH* layer height, Atmos. Meas. Tech., 10, 4895–4903, https://doi.org/10.5194/amt-10-4895-2017, 2017b.
Wüst, S., Offenwanger, T., Schmidt, C., Bittner, M., Jacobi, C., Stober, G., Yee, J.-H., Mlynczak, M. G., and Russell III, J. M.: Derivation of gravity wave intrinsic parameters and vertical wavelength using a single scanning OH(3-1) airglow spectrometer, Atmos. Meas. Tech., 11, 2937–2947, https://doi.org/10.5194/amt-11-2937-2018, 2018.
Wüst, S., Schmidt, C., Hannawald, P., Bittner, M., Mlynczak, M. G., and Russell III, J. M.: Observations of OH airglow from ground, aircraft, and satellite: investigation of wave-like structures before a minor stratospheric warming, Atmos. Chem. Phys., 19, 6401–6418, https://doi.org/10.5194/acp-19-6401-2019, 2019.
Wüst, S., Bittner, M., Yee, J.-H., Mlynczak, M. G., and Russell III, J. M.: Variability of the Brunt–Väisälä frequency at the OH*-airglow layer height at low and midlatitudes, Atmos. Meas. Tech., 13, 6067–6093, https://doi.org/10.5194/amt-13-6067-2020, 2020.
Yuan, T., She, C.-Y., Krueger, D. A., Sassi, F., Garcia, R., Roble, R. G.,
Liu, H.-L., and Schmidt, H.: Climatology of mesopause region temperature,
zonal wind, and meridional wind over Fort Collins, Colorado (41∘ N, 105∘ W),
and comparison with model simulations, J. Geophys. Res., 113, D03105,
https://doi.org/10.1029/2007JD008697, 2008.
Short summary
High-resolution images of the OH* airglow layer (ca. 87 km height) acquired at Otlica Observatory, Slovenia, have been analysed. A statistical analysis of small-scale wave structures with horizontal wavelengths up to 4.5 km suggests strong presence of instability features in the upper mesosphere or lower thermosphere. The dissipated energy of breaking gravity waves is derived from observations of turbulent vortices. It is concluded that dynamical heating plays a vital role in the atmosphere.
High-resolution images of the OH* airglow layer (ca. 87 km height) acquired at Otlica...