Articles | Volume 15, issue 7
https://doi.org/10.5194/amt-15-2277-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/amt-15-2277-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Characteristics of the derived energy dissipation rate using the 1 Hz commercial aircraft quick access recorder (QAR) data
Soo-Hyun Kim
School of Earth and Environmental Sciences, Seoul National University,
Seoul, South Korea
Jeonghoe Kim
School of Earth and Environmental Sciences, Seoul National University,
Seoul, South Korea
School of Earth and Environmental Sciences, Seoul National University,
Seoul, South Korea
Hye-Yeong Chun
Department of Atmospheric Sciences, Yonsei University, Seoul, South
Korea
Related authors
No articles found.
Ji-Hee Yoo and Hye-Yeong Chun
EGUsphere, https://doi.org/10.5194/egusphere-2025-748, https://doi.org/10.5194/egusphere-2025-748, 2025
Short summary
Short summary
This study revisits the Southern Hemisphere’s only major sudden stratospheric warming in September 2002, marked by an unprecedented polar vortex split. In addition to upward-propagating planetary wave 2 (PW2), westward PW2 generated in situ by barotropic–baroclinic instability, contributed to the vortex split. Unstable PW2 growth resulted from nonlinear wave-wave interactions and over-reflection. Vortex destabilization occurred as the anomalously poleward-shifted vortex reversed to easterlies.
Ji-Hee Yoo, Hye-Yeong Chun, and Min-Jee Kang
Atmos. Chem. Phys., 23, 10869–10881, https://doi.org/10.5194/acp-23-10869-2023, https://doi.org/10.5194/acp-23-10869-2023, 2023
Short summary
Short summary
The January 2021 sudden stratospheric warming was preceded by unusual double westerly jets with polar stratospheric and subtropical mesospheric cores. This wind structure promotes anomalous dissipation of tropospheric planetary waves between the two maxima, leading to unusually strong shear instability. Shear instability generates the westward-propagating planetary waves with zonal wavenumber 2 in situ, thereby splitting the polar vortex just before the onset.
Sung-Ho Suh, Woonseon Jung, Hong-Il Kim, Eun-Ho Choi, and Jung-Hoon Kim
EGUsphere, https://doi.org/10.5194/egusphere-2023-947, https://doi.org/10.5194/egusphere-2023-947, 2023
Preprint archived
Short summary
Short summary
This study performed the Statistical analysis of the correlation between solid hydrometeor and radar spectrum width according to wind speed that can occur the atmospheric disturbances such as turbulence and wind shear. These features were clearly shown in the Growth Zones where dendrite and needle-like snowflakes are dominant, respectively. This study will help in the field of i) aviation safety, ii) hydrometeor classification, and iii) knowledge about the mechanism of lightning.
Min-Jee Kang and Hye-Yeong Chun
Atmos. Chem. Phys., 21, 9839–9857, https://doi.org/10.5194/acp-21-9839-2021, https://doi.org/10.5194/acp-21-9839-2021, 2021
Short summary
Short summary
In winter 2019/20, the westerly quasi-biennial oscillation (QBO) phase was disrupted again by easterly winds. It is found that strong Rossby waves from the Southern Hemisphere weaken the jet core in early stages, and strong mixed Rossby–gravity waves reverse the wind in later stages. Inertia–gravity waves and small-scale convective gravity waves also provide negative forcing. These strong waves are attributed to an anomalous wind profile, barotropic instability, and slightly strong convection.
Chia-Lun Tsai, Kwonil Kim, Yu-Chieng Liou, Jung-Hoon Kim, YongHee Lee, and GyuWon Lee
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2021-100, https://doi.org/10.5194/acp-2021-100, 2021
Preprint withdrawn
Short summary
Short summary
This study examines a strong downslope wind event during ICE-POP 2018 using Doppler lidars, and observations. 3D winds can be well retrieved by
WISSDOM. This is first time to document the mechanisms of strong wind in observational aspect under fine weather. The PGF causing by adiabatic warming and channeling effect are key factors to dominate the strong wind. The values of this study are improving our understanding of the strong wind and increase the predictability of the weather forecast.
Min-Jee Kang, Hye-Yeong Chun, and Rolando R. Garcia
Atmos. Chem. Phys., 20, 14669–14693, https://doi.org/10.5194/acp-20-14669-2020, https://doi.org/10.5194/acp-20-14669-2020, 2020
Short summary
Short summary
In winter 2015/16, the descent of the westerly quasi-biennial oscillation (QBO) jet was interrupted by easterly winds. We find that Rossby–gravity and inertia–gravity waves weaken the jet core in early stages, and small-scale convective gravity waves, as well as horizontal and vertical components of Rossby waves, reverse the wind sign in later stages. The strong negative wave forcing in the tropics results from the enhanced convection, an anomalous wind profile, and barotropic instability.
Cited articles
Bodini, N., Lundquist, J. K., Krishnamurthy, R., Pekour, M., Berg, L. K., and Choukulkar, A.: Spatial and temporal variability of turbulence dissipation rate in complex terrain, Atmos. Chem. Phys., 19, 4367–4382, https://doi.org/10.5194/acp-19-4367-2019, 2019.
Bramberger, M., Dörnbrack, A., Wilms, H., Gemsa, S., Raynor, K., and
Sharman, R. D.: Vertically propagating mountain wave – A hazard for high-
flying aircraft?, J. Appl. Meteor. Climatol., 57, 1957–1975,
https://doi.org/10.1175/JAMC-D-17-0340.1, 2018.
Champagne, F. H., Friehe, C. A., Larue, J. C., and Wynagaard, J. C.: Flux
measurements, flux estimation techniques, and fine-scale turbulence
measurements in the unstable surface layer over land, J. Atmos. Sci., 34,
515–530, https://doi.org/10.1175/1520-0469(1977)034<0515:FMFETA>2.0.CO;2, 1977.
Cho, J. Y. N. and Lindborg, E.: Horizontal velocity structure functions in
the upper troposphere and lower stratosphere: 1. Observations, J. Geophys.
Res., 106, 10223–10232, https://doi.org/10.1029/2000JD900814, 2001.
Cho, J. Y. N., Newell, R. E., Anderson, B. E., Barrick, J. D. W., and
Thornhill, K. L.: Characterizations of tropospheric turbulence and stability
layers from aircraft observations, J. Geophys. Res., 108, 8784,
https://doi.org/10.1029/2002JD002820, 2003.
Chun, H.-Y. and Baik, J.-J.: Momentum flux by thermally induced internal
gravity waves and its approximation for large-scale models, J. Atmos. Sci.,
55, 3299–3310,
https://doi.org/10.1175/1520-0469(1998)055<3299:MFBTII>2.0.CO;2, 1998.
Clark, T. L., Hall, W. D., Kerr, R. M., Middleton, D., Radke, L., Ralph, F.
M., Neiman, P. J., and Levinson, D.: Origins of aircraft-damaging clear-air
turbulence during the 9 December 1992 Colorado downslope windstorm:
Numerical simulations and comparison with observations, J. Atmos. Sci., 57,
1105–1131, https://doi.org/10.1175/1520-0469(2000)057<1105:OOADCA>2.0.CO;2, 2000.
Cornman, L. B.: Airborne in situ measurements of turbulence, in: Aviation
Turbulence: Processes, Detection, Prediction, edited by: Sharman, R. D. and
Lane, T. D., Springer, Switzerland, 97–120,
https://doi.org/10.1007/978-3-319-23630-8_5, 2016.
Drüe, C. and Heinemann, G.: A review and practical guide to in-flight
calibration for aircraft turbulence sensors, J. Atmos. Ocean. Technol., 30,
2820–2837, https://doi.org/10.1175/JTECH-D-12-00103.1, 2013.
Dutton, J. A. and Panofsky, H. A.: Clear air turbulence: A mystery may be
unfolding, Science, 167, 937–944,
https://doi.org/10.1126/science.167.3920.937, 1970.
Ellrod, G. P. and Knapp, D. I.: An objective clear-air turbulence
forecasting technique: Verification and operational use, Weather Forecast.,
7, 150–165,
https://doi.org/10.1175/1520-0434(1992)007<0150:AOCATF>2.0.CO;2, 1992.
Ellrod, G. P. and Knox, J. A.: Improvements to an operational clear-air
turbulence diagnostic index by addition of a divergence trend term, Weather
Forecast., 25, 789–798, https://doi.org/10.1175/2009WAF2222290.1, 2010.
Frehlich, R.: Laser scintillation measurements of the temperature spectrum
in the atmospheric surface layer, J. Atmos. Sci., 49, 1494–1509,
https://doi.org/10.1175/1520-0469(1992)049<1494:LSMOTT>2.0.CO;2, 1992.
Frehlich, R. and Sharman, R. D.: Estimates of turbulence from numerical
weather prediction model output with applications to turbulence diagnosis
and data assimilation, Mon. Weather Rev., 132, 2308–2324,
https://doi.org/10.1175/1520-0493(2004)132<2308:EOTFNW>2.0.CO;2, 2004.
Gao, F. and Han, L.: Implementing the Nelder-Mead simplex algorithm with
adaptive parameters, Comput. Optim. Appl., 51, 259–277,
https://doi.org/10.1007/s10589-010-9329-3, 2012.
Gill, P. G.: Objective verification of World Area Forecast Centre clear air
turbulence forecasts, Meteor. Appl., 21, 3–11,
https://doi.org/10.1002/met.1288, 2014.
Gultepe, I., Sharman, R. D., Williams, P. D., Zhou, B., Ellrod, G., Minnis,
P., Trier, S., Griffin, S., Yum, S. S., Gharabaghi, B., Feltz, W., Temimi,
M., Pu, Z., Storer, L. N., Kneringer, P., Weston, M. J., Chuang, H.-Y.,
Thobois, L., Dimri, A. P., Dietz, S. J., França, G. B., Almeida, M. V.,
and Neto, F. L. A.: A review of high impact weather for aviation
meteorology, Pure Appl. Geophys., 176, 1869–1921,
https://doi.org/10.1007/s00024-019-02168-6, 2019.
Haverdings, H. and Chan, P. W.: Quick access recorder data analysis for
windshear and turbulence studies, J. Aircr., 47, 1443–1446,
https://doi.org/10.2514/1.46954, 2010.
Hersbach, H., Bell, B., Berrisford, P., et al.: The ERA5 global reanalysis, Q. J. Roy.
Meteorol. Soc., 146, 1999–2049, https://doi.org/10.1002/qj.3803, 2020.
Hinze, J. O.: Turbulence, 2nd Edition, McGraw-Hill, New York, 790 pp., 1975.
Hoblit, F. M. (Ed.): Gust Loads on Aircraft: Concepts and Applications, AIAA
Education Series, American Institute of Aeronautics and Asctronautics,
Washington, 306 pp., 1988.
International Civil Aviation Organization: Meteorological service for
international air navigation: Annex 3 to the Convention on International
Civil Aviation, 14th ed. ICAO International Standards and Recommended
Practices Tech. Rep., ICAO, Montreal, 128 pp., 2001.
International Civil Aviation Organization: Meteorological service for
international air navigation: Annex 3 to the Convention on International
Civil Aviation, 17th ed. ICAO International Standards and Recommended
Practices Tech. Rep., ICAO, Montreal, 206 pp., 2010.
Kim, J., Kim, J.-H., and Sharman, R. D.: Characteristics of energy
dissipation rate observed from the high-frequency sonic anemometer at
Boseong, South Korea, Atmosphere, 12, 837,
https://doi.org/10.3390/atmos12070837, 2021.
Kim, J.-H. and Chun, H.-Y.: A numerical study of clear-air turbulence (CAT)
encounters over South Korea on 2 April 2007, J. Appl. Meteor. Climatol., 49,
2381–2403, https://doi.org/10.1175/2010JAMC2449.1, 2010.
Kim, J.-H. and Chun, H.-Y.: Statistics and possible sources of aviation
turbulence over South Korea, J. Appl. Meteor. Climatol., 50, 311–324,
https://doi.org/10.1175/2010JAMC2492.1, 2011.
Kim, J.-H. and Chun, H.-Y.: A numerical simulation of convectively induced
turbulence above deep convection, J. Appl. Meteor. Climatol., 51, 1180–1200,
https://doi.org/10.1175/JAMC-D-11-0140.1, 2012.
Kim, J.-H., Chun, H.-Y., Sharman, R. D., and Keller, T. L.: Evaluations of
upper-level turbulence diagnostics performance using the Graphical
Turbulence Guidance (GTG) system and pilot reports (PIREPs) over East Asia,
J. Appl. Meteor. Climatol., 50, 1936–1951,
https://doi.org/JAMC-D-10-05017.1, 2011.
Kim, J.-H., Chan, W. N., Sridhar, B., and Sharman, R. D.: Combined winds and
turbulence prediction system for automated air-traffic management
applications, J. Appl. Meteor. Climatol., 54, 766–784,
https://doi.org/10.1175/JAMC-D-14-0216.1, 2015.
Kim, J.-H., Sharman, R. D., Strahan, M., Scheck, J. W., Bartholomew, C.,
Cheung, J. C., Buchanan, P., and Gait, N.: Improvements in nonconvective
aviation turbulence prediction for the world area forecast system, B.
Am. Meteorol. Soc., 98, 2295–2311, https://doi.org/10.1175/BAMS-D-17-0117.1,
2018.
Kim, J.-H., Sharman, R. D., Benjamin, S. G., Brown, J. M., Park, S.-H., and
K. J. B.: Improvement of mountain-wave turbulence forecasts in NOAA's Rapid
Refresh (RAP) model with the hybrid vertical coordinate system, Weather
Forecast., 34, 773–780, https://doi.org/10.1175/WAF-D-18-0187.1, 2019.
Kim, J.-H., Park, J.-R., Kim, S.-H., Kim, J., Lee, E., Baek, S., and Lee,
G.: A detection of convectively induced turbulence using in situ aircraft
and radar spectral width data, Remote Sens., 13, 726,
https://doi.org/10.3390/rs13040726, 2021.
Kim, S.-H. and Chun, H.-Y.: Aviation turbulence encounters detected from
aircraft observations: Spatiotemporal characteristics and application to
Korean aviation turbulence guidance, Meteor. Appl., 23, 594–604,
https://doi.org/10.1002/met.1581, 2016.
Kim, S.-H., Chun, H.-Y., and Chan, P. W.: Comparison of turbulence
indicators obtained from in situ flight data, J. Appl. Meteor. Climatol.,
56, 1609–1623, https://doi.org/10.1175/JAMC-D-16-0291.1, 2017.
Kim, S.-H., Chun, H.-Y., Sharman, R. D., and Trier, S. B.: Development of
near-cloud turbulence diagnostics based on a convective gravity wave drag
parameterization, J. Appl. Meteor. Climatol., 58, 1725–1750,
https://doi.org/10.1175/JAMC-D-18-0300.1, 2019.
Kim, S.-H., Chun, H.-Y., Kim, J.-H., Sharman, R. D., and Strahan, M.: Retrieval of eddy dissipation rate from derived equivalent vertical gust included in Aircraft Meteorological Data Relay (AMDAR), Atmos. Meas. Tech., 13, 1373–1385, https://doi.org/10.5194/amt-13-1373-2020, 2020.
Kim, S.-H., Chun, H.-Y., Lee, D.-B., Kim, J.-H., and Sharman, R. D.:
Improving numerical weather prediction-based near-cloud aviation turbulence
forecasts by diagnosing convective gravity wave breaking, Weather Forecast.,
36, 1735–1757, https://doi.org/10.1175/WAF-D-20-0213.1, 2021.
Knapp, K. R., Ansari, S., Bain, C. L., Bourassa, M. A., Dickinson, M. J.,
Funk, C., Helms, C. N., Hennon, C. C., Holmes, C. D., Huffman, G. J.,
Kossin, J. P., Lee, H.-T., Loew, A., and Magnusdottir, G.: Globally gridded
satellite observations for climate studies, B. Am. Meteor. Soc., 92,
893–907, https://doi.org/10.1175/2011BAMS3039.1, 2011.
Knox, J. A., McCann, D. W., and Willams, P. D.: Application of the
Lighthill-Ford theory of spontaneous imbalance to clear-air turbulence
forecasting, J. Atmos. Sci. 65, 3292–3304,
https://doi.org/10.1175/2008JAS2477.1, 2008.
Ko, H.-C., Chun, H.-Y., Wilson, R., and Geller, M. A.: Characteristics of
atmospheric turbulence retrieved from high vertical-resolution radiosonde
data in the United States, J. Geophys. Res.-Atmos., 124, 7553–7579,
https://doi.org/10.1029/2019JD030287, 2019.
Koch, S. E., Jamison, B. D., Lu, C., Smith, T. L., Tollerud, E. I., Girz,
C., Wang, N., Lane, T. P., Shapiro, M. A., Parrish, D. D., and Cooper, O.
R.: Turbulence and gravity waves within an upper-level front, J. Atmos.
Sci., 62, 3885–3908, https://doi.org/10.1175/JAS3674.1, 2005.
Kolmogorov, A. N.: The local structure of turbulence in incompressible
viscous fluid for very large Reynolds numbers, Dokl. Akad. Nauk SSSR, 30,
301–305, 1941.
Kopeć, J. M., Kwiatkowski, K., de Haan, S., and Malinowski, S. P.: Retrieving atmospheric turbulence information from regular commercial aircraft using Mode-S and ADS-B, Atmos. Meas. Tech., 9, 2253–2265, https://doi.org/10.5194/amt-9-2253-2016, 2016.
Krozel, J. A. and Sharman, R. D.: Remote Detection of Turbulence via ADS-B,
AIAA Guidance, Navigation, and Control Conference, AIAA 2015-1547, AIAA
SciTech, https://doi.org/10.2514/6.2015-1547, 2015.
Lane, T. P. and Sharman, R. D.: Some influences of background flow
conditions on the generation of turbulence due to gravity wave breaking
above deep convection, J. Appl. Meteor. Climatol., 47, 2777–2796,
https://doi.org/10.1175/2008JAMC1787.1, 2008.
Lane, T. P., Sharman, R. D., Clark, T. L., and Hsu, H.-M.: An investigation
of turbulence generation mechanisms above deep convection, J. Atmos. Sci.,
60, 1297–1321, https://doi.org/10.1175/1520-0469(2003)60<1297:AIOTGM>2.0.CO;2, 2003.
Lane, T. P., Doyle, J. D., Plougonven, R., Shapiro, M. A., and Sharman, R.
D.: Observations and numerical simulations of inertia-gravity waves and
shearing instabilities in the vicinity of a jet stream, J. Atmos. Sci., 61,
2692–2706, https://doi.org/10.1175/JAS3305.1, 2004.
Lane, T. P., Doyle, J. D., Sharman, R. D., Shapiro, M. A., and Watson, C.
D.: Statistics and dynamics of aircraft encounters of turbulence over
Greenland, Mon. Weather Rev., 137, 2687–2702,
https://doi.org/10.1175/2009MWR2878.1, 2009.
Lane, T. P., Sharman, R. D., Trier, S. B., Fovell, R. G., and Williams, J.
K.: Recent advances in the understanding of near-cloud turbulence, B.
Am. Meteorol. Soc., 93, 499–515, https://doi.org/10.1175/BAMS-D-11-00062.1,
2012.
Lee, S. H., Williams, P. D., and Frame, T. H.: Increased shear in the North
Atlantic upper-level jet stream over the past four decades, Nature, 572,
639–642, https://doi.org/10.1038/s41586-019-1465-z, 2019.
Lenschow, D. H.: The measurement of air velocity and temperature using the
NCAR Buffalo aircraft measuring system, NCAR Tech. Note EDD-74, NCAR,
Boulder, Colorado, 39 pp., 1972.
Mann, J.: The spatial structure of neutral atmospheric surface layer
turbulence, J. Fluid Mech., 273, 141–168,
https://doi.org/10.1017/S0022112094001886, 1994:
Meneguz, E., Wells, H., and Turp, D.: An automated system to quantify
aircraft encounters with convectively induced turbulence over Europe and the
Northeast Atlantic, J. Appl. Meteor. Climatol., 55, 1077–1089,
https://doi.org/10.1175/JAMC-D-15-0194.1, 2016.
Moré, J. J.: The Levenberg-Marquardt algorithm: Implementation and
theory, in: Numerical analysis edited by: Waston, G. A., Springer Berlin
Heidelberg, Berlin, Heidelberg, 105–116, 1978.
Muñoz-Esparza, D., Sharman, R. D., and Lundquist, J. K.: Turbulence
dissipation rate in the atmospheric boundary layer: observations and WRF
mesoscale modelling during the XPIA field campaign, Mon. Weather Rev., 146,
351–371, https://doi.org/10.1175/MWR-D-17-0186.1, 2018.
Nastrom, G. D. and Gage, K. S.: A climatology of atmospheric wavenumber
spectra of wind and temperature observed by commercial aircraft, J. Atmos.
Sci., 42, 950–960, https://doi.org/10.1175/1520-0469(1985)042<0950:ACOAWS>2.0.CO;2, 1985.
Oncley, S. P., Friehe, C. A., Larue, J. C., Businger, J. A., Itsweire, E.
C., and Chang, S. S.: Surface-layer fluxes, profiles, and turbulence
measurements over uniform terrain under near-neutral conditions, J. Atmos.
Sci., 53, 1029–1044, https://doi.org/10.1175/1520-0469(1996)053<1029:SLFPAT>2.0.CO;2, 1996.
Pearson, J. M. and Sharman, R. D.: Prediction of energy dissipation rates
for aviation turbulence: Part II: Nowcasting convective and nonconvective
turbulence, J. Appl. Meteor. Climatol., 56, 339–351,
https://doi.org/10.1175/JAMC-D-16-0312.1, 2017.
Press, W. H., Flannery, B. P., Teukolsky, S. A., and Vetterling, W. T.:
Numerical Recipes: The Art of Scientific Computing, 2nd ed. Cambridge
University Press, 963 pp., 1992.
Schwartz, B.: The quantitative use of PIREPs in developing aviation weather
guidance products, Weather Forecast., 11, 372–384,
https://doi.org/10.1175/1520-0434(1996)011<0372:TQUOPI>2.0.CO;2, 1996.
Sharman, R. D. and Lane, T. P. (Eds.): Aviation Turbulence: Processes,
Detection, Prediction, Springer, Switzerland, 523 pp.,
https://doi.org/10.1007/978-3-319-23630-8, 2016.
Sharman, R. D. and Pearson, J. M.: Prediction of energy dissipation rates
for aviation turbulence. Part I: Forecasting nonconvective turbulence, J.
Appl. Meteor. Climatol., 56, 317–337,
https://doi.org/10.1175/JAMC-D-16-0205.1, 2017.
Sharman, R. D., Doyle, J. D., and Shapiro, M. A.: An investigation of a
commercial aircraft encounter with severe clear-air turbulence over western
Greenland, J. Appl. Meteor. Climatol., 51, 42–53,
https://doi.org/JAMC-D-11-044.1, 2012.
Sharman, R. D., Tebaldi, C., Wiener, G., and Wolff, J.: An integrated
approach to mid- and upper-level turbulence forecasting, Weather Forecast.,
21, 268–287, https://doi.org/10.1175/WAF924.1, 2006.
Sharman, R. D., Cornman, L. B., Meymaris, G., Pearson, J. M., and Farrar,
T.: Description and derived climatologies of automated in situ
eddy-dissipation-rate reports of atmospheric turbulence, J. Appl. Meteor.
Climatol., 53, 1416–1432, https://doi.org/10.1175/JAMC-D-13-0329.1, 2014.
Storer, L. N., Gill, P. G., and Williams, P. D.: Multi-model ensemble
predictions of aviation turbulence, Meteor. Appl., 26, 416–428,
https://doi.org/10.1002/met.1772, 2019.
Strauss, L., Serafin, S., Haimov, S., and Grubišić, V.: Turbulence
in breaking mountain waves and atmospheric rotors estimated from airborne in
situ and Doppler radar measurements, Q. J. Roy. Meteorol. Soc., 141,
3207–3225, https://doi.org/10.1002/qj.2604, 2015.
Trier, S. B. and Sharman, R. D.: Trapped gravity waves and their
association with turbulence in a large thunderstorm anvil during PECAN, Mon.
Weather Rev., 146, 3031–3052, https://doi.org/10.1175/MWR-D-18-0152.1, 2018.
Trier, S. B., Sharman, R. D., and Lane, T. P.: Influences of moist
convection on a cold-season outbreak of clear-air turbulence (CAT), Mon.
Weather Rev., 140, 2477–2496, https://doi.org/10.1175/MWR-D-11-00353.1, 2012.
Truscott, B. S.: EUMETNET AMDAR AAA AMDAR software developments – Technical
Specification, Doc. Ref. E_AMDAR/TSC/003, Met Office, Exeter,
UK, 18 pp., 2000.
von Kármán, T.: Progress in the statistical theory of turbulence.
P. Natl. Acad. Sci. USA, 34, 530–539,
https://doi.org/10.1073/pnas.34.11530, 1948.
Williams, A. and Marcotte, D.: Wind measurements on a maneuvering
twin-engine turboprop aircraft accounting for flow distortion, J. Atmos.
Ocean. Technol., 17, 795–810,
https://doi.org/10.1175/1520-0426(2000)017<0795:WMOAMT>2.0.CO;2, 2000.
Williams, J. K. and Meymaris, G.: Remote turbulence detection using
ground-based doppler weather radar, in: Aviation Turbulence: Processes,
Detection, Prediction, edited by: Sharman, R. D. and Lane, T. D., Springer,
Switzerland, 149–177,
https://doi.org/10.1007/978-3-319-23630-8_7, 2016.
Williams, P. D. and Joshi, M. M.: Intensification of winter transatlantic
aviation turbulence in response to climate change, Nat. Clim. Change, 3,
644–648, https://doi.org/10.1038/nclimate1866, 2013.
World Meteorological Organization: Aircraft meteorological data relay
(AMDAR) reference manual, WMO 958, 80 pp., available at:
https://library.wmo.int/doc_num.php?explnum_id=9026 (last access: 9 April 2022), 2003.
Wyngaard, J. and Coté, O.: The budgets of turbulent kinetic energy and
temperature variance in the atmospheric surface layer, J. Atmos. Sci., 28,
190–201, https://doi.org/10.1175/1520-0469(1971)028<0190:TBOTKE>2.0.CO;2, 1971.
Zhang, F.: Generation of mesoscale gravity waves in upper-tropospheric
jet–front systems. J. Atmos. Sci., 61, 440–457,
https://doi.org/10.1175/1520-0469(2004)061<0440:GOMGWI>2.0.CO;2, 2004.
Zovko-Rajak, D., Lane, T. P., Sharman, R. D., and Trier, S. B.: The
role of gravity wave breaking in a case of upper-level near-cloud
turbulence, Mon. Weather Rev., 147, 4567–4588,
https://doi.org/10.1175/MWR-D-18-0445.1, 2019.
Short summary
The cube root of the energy dissipation rate (EDR), as a standard reporting metric of atmospheric turbulence, is estimated using 1 Hz commercial quick access recorder data from Korean-based national air carriers with two different types of aircraft. Various EDRs are estimated using zonal, meridional, and derived vertical wind components and the derived equivalent vertical gust. Characteristics of the observed EDR estimates using 1 Hz flight data are examined to observe strong turbulence cases.
The cube root of the energy dissipation rate (EDR), as a standard reporting metric of...