Articles | Volume 15, issue 13
https://doi.org/10.5194/amt-15-4001-2022
https://doi.org/10.5194/amt-15-4001-2022
Research article
 | 
07 Jul 2022
Research article |  | 07 Jul 2022

Testing the efficacy of atmospheric boundary layer height detection algorithms using uncrewed aircraft system data from MOSAiC

Gina Jozef, John Cassano, Sandro Dahlke, and Gijs de Boer

Related authors

Forcing for varying boundary layer stability across Antarctica
Mckenzie J. Dice, John J. Cassano, and Gina C. Jozef
Weather Clim. Dynam., 5, 369–394, https://doi.org/10.5194/wcd-5-369-2024,https://doi.org/10.5194/wcd-5-369-2024, 2024
Short summary
An overview of the vertical structure of the atmospheric boundary layer in the central Arctic during MOSAiC
Gina C. Jozef, John J. Cassano, Sandro Dahlke, Mckenzie Dice, Christopher J. Cox, and Gijs de Boer
Atmos. Chem. Phys., 24, 1429–1450, https://doi.org/10.5194/acp-24-1429-2024,https://doi.org/10.5194/acp-24-1429-2024, 2024
Short summary
Variations in boundary layer stability across Antarctica: a comparison between coastal and interior sites
Mckenzie J. Dice, John J. Cassano, Gina C. Jozef, and Mark Seefeldt
Weather Clim. Dynam., 4, 1045–1069, https://doi.org/10.5194/wcd-4-1045-2023,https://doi.org/10.5194/wcd-4-1045-2023, 2023
Short summary
Derivation and compilation of lower-atmospheric properties relating to temperature, wind, stability, moisture, and surface radiation budget over the central Arctic sea ice during MOSAiC
Gina C. Jozef, Robert Klingel, John J. Cassano, Björn Maronga, Gijs de Boer, Sandro Dahlke, and Christopher J. Cox
Earth Syst. Sci. Data, 15, 4983–4995, https://doi.org/10.5194/essd-15-4983-2023,https://doi.org/10.5194/essd-15-4983-2023, 2023
Short summary
Thermodynamic and kinematic drivers of atmospheric boundary layer stability in the central Arctic during the Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC)
Gina C. Jozef, John J. Cassano, Sandro Dahlke, Mckenzie Dice, Christopher J. Cox, and Gijs de Boer
Atmos. Chem. Phys., 23, 13087–13106, https://doi.org/10.5194/acp-23-13087-2023,https://doi.org/10.5194/acp-23-13087-2023, 2023
Short summary

Related subject area

Subject: Others (Wind, Precipitation, Temperature, etc.) | Technique: In Situ Measurement | Topic: Data Processing and Information Retrieval
The role of time averaging of eddy covariance fluxes on water use efficiency dynamics of maize
Arun Rao Karimindla, Shweta Kumari, Saipriya S R, Syam Chintala, and BVN P. Kambhammettu​​​​​​​
Atmos. Meas. Tech., 17, 5477–5490, https://doi.org/10.5194/amt-17-5477-2024,https://doi.org/10.5194/amt-17-5477-2024, 2024
Short summary
Number- and size-controlled rainfall regimes in the Netherlands: physical reality or statistical mirage?
Marc Schleiss
Atmos. Meas. Tech., 17, 4789–4802, https://doi.org/10.5194/amt-17-4789-2024,https://doi.org/10.5194/amt-17-4789-2024, 2024
Short summary
The Far-INfrarEd Spectrometer for Surface Emissivity (FINESSE) – Part 2: First measurements of the emissivity of water in the far-infrared
Laura Warwick, Jonathan E. Murray, and Helen Brindley
Atmos. Meas. Tech., 17, 4777–4787, https://doi.org/10.5194/amt-17-4777-2024,https://doi.org/10.5194/amt-17-4777-2024, 2024
Short summary
Bias Correction and Application of Labeled Smartphone Pressure Data for Evaluating the Best Track of Landfalling Tropical Cyclones
Ge Qiao, Yuyao Cao, Qinghong Zhang, and Juanzhen Sun
EGUsphere, https://doi.org/10.5194/egusphere-2024-1505,https://doi.org/10.5194/egusphere-2024-1505, 2024
Short summary
Hailstorm events in the Central Andes of Peru: insights from historical data and radar microphysics
Jairo M. Valdivia, José Luis Flores-Rojas, Josep J. Prado, David Guizado, Elver Villalobos-Puma, Stephany Callañaupa, and Yamina Silva-Vidal
Atmos. Meas. Tech., 17, 2295–2316, https://doi.org/10.5194/amt-17-2295-2024,https://doi.org/10.5194/amt-17-2295-2024, 2024
Short summary

Cited articles

Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung: Polar Research and Supply Vessel POLARSTERN operated by the Alfred-Wegener-Institute, Journal of Large-Scale Research Facilities, 3, A119, https://doi.org/10.17815/jlsrf-3-163, 2017. 
American Meteorological Society: Bulk Richardson number. Glossary of Meteorology, https://glossary.ametsoc.org/wiki/Bulk_richardson_number (last access: 4 March 2022), 2012. 
Andreas, E. L., Horst, T. W., Grachev, A. A., Persson, P. O. G., Fairall, C. W., Guest, P. S., and Jordan, R. E.: Parametrizing turbulent exchange over summer sea ice and the marginal ice zone, Q. J. Roy. Meteor. Soc., 136, 927–943, https://doi.org/10.1002/qj.618, 2010. 
Banta, R. M., Pechugina, Y. L., and Newsom, R. K.: Relationship between Low-Level Jet Properties and Turbulence Kinetic Energy in the Nocturnal Stable Boundary Layer, J. Atmos. Sci., 60, 2549–2555, https://doi.org/10.1175/1520-0469(2003)060<2549:RBLJPA>2.0.CO;2, 2003. 
Brooks, I. M., Tjernström, M., Persson, P. O. G., Shupe, M. D., Atkinson, R. A., Canut, G., Birch, C. E., Mauritsen, T., Sedlar, J., and Brooks, B. J.: The Turbulent Structure of the Arctic Summer Boundary Layer During The Arctic Summer Cloud-Ocean Study, J. Geophys. Res.-Atmos., 122, 9685–9704, https://doi.org/10.1002/2017JD027234, 2017. 
Download
Short summary
During the MOSAiC expedition, meteorological conditions over the lowest 1 km of the atmosphere were sampled with the DataHawk2 uncrewed aircraft system. These data were used to identify the best method for atmospheric boundary layer height detection by comparing visually identified subjective boundary layer height to that identified by several objective automated detection methods. The results show a bulk Richardson number-based approach gives the best estimate of boundary layer height.