Articles | Volume 15, issue 2
https://doi.org/10.5194/amt-15-485-2022
https://doi.org/10.5194/amt-15-485-2022
Research article
 | 
27 Jan 2022
Research article |  | 27 Jan 2022

Rainfall retrieval algorithm for commercial microwave links: stochastic calibration

Wagner Wolff, Aart Overeem, Hidde Leijnse, and Remko Uijlenhoet

Related authors

Flood drivers and trends: a case study of the Geul River Catchment (the Netherlands) over the past half century
Athanasios Tsiokanos, Martine Rutten, Ruud J. van der Ent, and Remko Uijlenhoet
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2023-263,https://doi.org/10.5194/hess-2023-263, 2023
Preprint under review for HESS
Short summary
Measuring rainfall using microwave links: the influence of temporal sampling
Luuk D. van der Valk, Miriam Coenders-Gerrits, Rolf W. Hut, Aart Overeem, Bas Walraven, and Remko Uijlenhoet
EGUsphere, https://doi.org/10.5194/egusphere-2023-1971,https://doi.org/10.5194/egusphere-2023-1971, 2023
This preprint is open for discussion and under review for Atmospheric Measurement Techniques (AMT).
Short summary
Technical note: Overview and comparison of three quality control algorithms for rainfall data from personal weather stations
Abbas El Hachem, Jochen Seidel, Tess O'Hara, Roberto Villalobos Herrera, Aart Overeem, Remko Uijlenhoet, András Bárdossy, and Lotte de Vos
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2023-195,https://doi.org/10.5194/hess-2023-195, 2023
Preprint under review for HESS
Short summary
Assessing sampling and retrieval errors of GPROF precipitation estimates over The Netherlands
Linda Bogerd, Hidde Leijnse, Aart Overeem, and Remko Uijlenhoet
EGUsphere, https://doi.org/10.5194/egusphere-2023-1258,https://doi.org/10.5194/egusphere-2023-1258, 2023
Short summary
Merging with crowdsourced rain gauge data improves pan-European radar precipitation estimates
Aart Overeem, Hidde Leijnse, Gerard van der Schrier, Else van den Besselaar, Irene Garcia-Marti, and Lotte Wilhelmina de Vos
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2023-122,https://doi.org/10.5194/hess-2023-122, 2023
Revised manuscript under review for HESS
Short summary

Related subject area

Subject: Others (Wind, Precipitation, Temperature, etc.) | Technique: Remote Sensing | Topic: Validation and Intercomparisons
Daily satellite-based sunshine duration estimates over Brazil: validation and intercomparison
Maria Lívia L. M. Gava, Simone M. S. Costa, and Anthony C. S. Porfírio
Atmos. Meas. Tech., 16, 5429–5441, https://doi.org/10.5194/amt-16-5429-2023,https://doi.org/10.5194/amt-16-5429-2023, 2023
Short summary
Statistical assessment of a Doppler radar model of TKE dissipation rate for low Richardson numbers
Hubert Luce, Lakshmi Kantha, and Hiroyuki Hashiguchi
Atmos. Meas. Tech., 16, 5091–5101, https://doi.org/10.5194/amt-16-5091-2023,https://doi.org/10.5194/amt-16-5091-2023, 2023
Short summary
Extended validation of Aeolus winds with wind-profiling radars in Antarctica and Arctic Sweden
Sheila Kirkwood, Evgenia Belova, Peter Voelger, Sourav Chatterjee, and Karathazhiyath Satheesan
Atmos. Meas. Tech., 16, 4215–4227, https://doi.org/10.5194/amt-16-4215-2023,https://doi.org/10.5194/amt-16-4215-2023, 2023
Short summary
Assessing sampling and retrieval errors of GPROF precipitation estimates over The Netherlands
Linda Bogerd, Hidde Leijnse, Aart Overeem, and Remko Uijlenhoet
EGUsphere, https://doi.org/10.5194/egusphere-2023-1258,https://doi.org/10.5194/egusphere-2023-1258, 2023
Short summary
The impact of Aeolus winds on near-surface wind forecasts over tropical ocean and high-latitude regions
Haichen Zuo and Charlotte Bay Hasager
Atmos. Meas. Tech., 16, 3901–3913, https://doi.org/10.5194/amt-16-3901-2023,https://doi.org/10.5194/amt-16-3901-2023, 2023
Short summary

Cited articles

Abdelaziz, R. and Zambrano-Bigiarini, M.: Particle Swarm Optimization for inverse modeling of solute transport in fractured gneiss aquifer, J. Contam. Hydrol., 164, 285–298, https://doi.org/10.1016/j.jconhyd.2014.06.003, 2014. a
Atlas, D. and Ulbrich, C. W.: Path- and area-integrated rainfall measurement by microwave attenuation in the 1–3 cm band, J. Appl. Meteorol., 16, 1322–1331, https://doi.org/10.1175/1520-0450(1977)016<1322:PAAIRM>2.0.CO;2, 1977. a
Bianchi, B., van Leeuwen, P. J., Hogan, R. J., and Berne, A.: A variational approach to retrieve rain rate by combining information from rain gauges, radars, and microwave links, J. Hydrometeorol., 14, 1897–1909, https://doi.org/10.1175/JHM-D-12-094.1, 2013. a
Bisselink, B., Zambrano-Bigiarini, M., Burek, P., and de Roo, A.: Assessing the role of uncertain precipitation estimates on the robustness of hydrological model parameters under highly variable climate conditions, Journal of Hydrology: Regional Studies, 8, 112–129, https://doi.org/10.1016/j.ejrh.2016.09.003, 2016. a
Brauer, C. C., Overeem, A., Leijnse, H., and Uijlenhoet, R.: The effect of differences between rainfall measurement techniques on groundwater and discharge simulations in a lowland catchment, Hydrol. Process., 30, 3885–3900, https://doi.org/10.1002/hyp.10898, 2016. a
Download
Short summary
The existing infrastructure for cellular communication is promising for ground-based rainfall remote sensing. Rain-induced signal attenuation is used in dedicated algorithms for retrieving rainfall depth along commercial microwave links (CMLs) between cell phone towers. This processing is a source of many uncertainties about input data, algorithm structures, parameters, CML network, and local climate. Application of a stochastic optimization method leads to improved CML rainfall estimates.