Bosveld, F. C.: The Cabauw In-situ Observational Program 2000–Present:
Instruments, Calibrations and Set-up, KNMI, Technical Report, TR-384,
https://cdn.knmi.nl/knmi/pdf/bibliotheek/knmipubTR/TR384.pdf
(last access: 29 March 2022), 2020.
Crosby, J. D.: Visibility sensor accuracy: what's realistic, in: 12th
Sympsium on Meterological Observations and Instrumentation, 13 February 2003, Long Beach, CA, USA, 9–13,
https://ams.confex.com/ams/annual2003/techprogram/paper_59024.htm (last access: 23 September 2022), 2003.
Curcio, J. A. and Knestrick, G. L.: Correlation of Atmospheric Transmission
with Backscattering, J. Opt. Soc. Am., 48, 686–689, https://doi.org/10.1364/josa.48.000686, 1958.
Dabberdt, W. F. and Eigsti, S. L.: Regional visibility modeling for the
Eastern United States, Atmos. Environ., 15, 2055–2061,
https://doi.org/10.1016/0004-6981(81)90238-9, 1981.
Doherty, S. J., Anderson, T. L., and Charlson, R. J.: Measurement of the Lidar Ratio for Atmospheric Aerosols with a 180
∘ Backscatter Nephelometer, Appl. Optics, 38, 1823–1832, https://doi.org/10.1364/AO.38.001823, 1999.
Emeis, S., Harris, M., and Banta, R. M.: Boundary-layer anemometry by
optical remote sensing for wind energy applications, Meteorol. Z., 16,
337–347, https://doi.org/10.1127/0941-2948/2007/0225, 2007.
Fenn, R. W: Correlation between Atmospheric Backscattering and
Meteorological Visual Range, Appl. Optics, 5, 293–295,
https://doi.org/10.1364/AO.5.000293, 1966.
Fernald, F., Herman, B., and Reagan, J.: Determination of aerosol height
distributions by lidar, J. Appl. Meteorol., 11, 482–489,
https://doi.org/10.1175/1520-0450(1972)011<0482:DOAHDB>2.0.CO;2, 1972.
Fleischer, K., Warlind, D., Van der Molen, M., Rebel, K. T., Arneth, A.,
Erisman, J. W., Wassen, M., Smith, B., Gough, C., Margolis, H., Cescatti,
A., Montagnani, L., Arain, A., and Dolman, A. J.: Low historical nitrogen
deposition effect on carbon sequestration in the boreal zone, J. Geophys.
Res.-Biogeo., 120, 2542–2561, https://doi.org/10.1002/2015JG002988, 2015.
Gasteiger, J., Groß, S., Freudenthaler, V., and Wiegner, M.: Volcanic ash from Iceland over Munich: mass concentration retrieved from ground-based remote sensing measurements, Atmos. Chem. Phys., 11, 2209–2223, https://doi.org/10.5194/acp-11-2209-2011, 2011.
Held, Andreas, Zerrath, A., McKeon, U., Fehrenbach, T., Niessner,
R., Plass-Dülmer, C., Kaminski, U., Berresheim, Harald, and Pöschl,
U.: Aerosol size distributions measured in urban, rural and high-alpine air
with an electrical low pressure impactor (ELPI), Atmos. Environ., 42, 8502–8512, https://doi.org/10.1016/j.atmosenv.2008.06.015, 2008.
Hu, L. and Yang, H.: Monitoring and analysis of sea fog in an offshore
waterway using lidar, Opt. Eng., 60, 064103, https://doi.org/10.1117/1.OE.60.6.064103,
2021.
Jäger, H., Deshler, T., and Hofmann, D. J.: Midlatitude lidar
backscatter conversions based on balloonborne aerosol measurements, Geophys.
Res. Lett., 22, 1729–1732, https://doi.org/10.1029/95gl01521, 1995.
Jones, D. W., Ouldridge, M., and Sparks, W. R.: The first WMO intercomparison
of visibility measurements: final report, WMO,
https://library.wmo.int/index.php?lvl=notice_display&id=11248#.Yh99aejP2Uk (last access: 2 March 2022), 1990.
Karl, M., Kukkonen, J., Keuken, M. P., Lützenkirchen, S., Pirjola, L., and Hussein, T.: Modeling and measurements of urban aerosol processes on the neighborhood scale in Rotterdam, Oslo and Helsinki, Atmos. Chem. Phys., 16, 4817–4835, https://doi.org/10.5194/acp-16-4817-2016, 2016.
KNMI: Meteo profiles – validated tower profiles of wind, dew point, temperature and visibility at 10 minute interval at Cabauw, KNMI Data Services [data set],
https://dataplatform.knmi.nl/dataset/cesar-tower-meteo-lb1-t10-v1-2, last access: 22 September 2022a.
KNMI: Meteo surface – validated observations of common atmospheric variables at 10 minute interval at Cabauw, KNMI Data Services [data set],
https://dataplatform.knmi.nl/dataset/cesar-surface-meteo-lb1-t10-v1-0, last access: 22 September 2022b.
Knoop, S., Bosveld, F. C., de Haij, M. J., and Apituley, A.: A 2-year intercomparison of continuous-wave focusing wind lidar and tall mast wind measurements at Cabauw, Atmos. Meas. Tech., 14, 2219–2235, https://doi.org/10.5194/amt-14-2219-2021, 2021.
Koffi, B., Schulz, M., Breon, F-M., Griesfeller, J., Winker, D. M.,
Balkanski, Y., Bauer, S., Berntsen, T., Chin, M., Collins, W. D., Dentener,
F., Diehl, T., Easter, R., Ghan, S., Ginoux, P., Gong, S., Horowitz, L. W.,
Iversen, T., Kirkevåg, A., Koch, D., Krol, M., Myhre, G., Stier, P., and
Takemura, T.: Application of the CALIOP layer product to evaluate the
vertical distribution of aerosols estimated by global models: AeroCom phase I results, J. Geophys. Res.-Atmos., 117, D10201, https://doi.org/10.1029/2011JD016858, 2012.
Kreid, D. K.: Atmospheric visibility measurement by a modulated cw lidar,
Appl. Optics, 15, 1823, https://doi.org/10.1364/ao.15.001823, 1976.
Middleton, W. E. K.: Visibility in Meteorology: The Theory and Practice of
the Measurement of the Visual Range, University of Toronto Press, Toronto,
Canada, ISBN 9780598807717, 1941.
Nair, A. T.: Bioaerosols in the landfill environment: an overview of
microbial diversity and potential health hazards, Aerobiologia, 37, 185–203,
https://doi.org/10.1007/s10453-021-09693-9, 2021.
Navas-Guzmán, F., Bravo-Aranda, J. A., Guerrero-Rascado, J. L.,
Granados-Mu noz, M. J., and Alado-Arboledas, L.: Statistical analysis of
aerosol optical properties retrieved by Raman lidar over Southeastern Spain,
Tellus B, 65, 21234, https://doi.org/10.3402/tellusb.v65i0.21234, 2013.
Nebuloni, R.: Empirical relationships between extinction coefficient and
visibility in fog, Appl. Optics, 44, 3795–3804, https://doi.org/10.1364/ao.44.003795,
2005.
Pantazis, A., Papayannis, A., and Georgousis, G.: Lidar algorithms for
atmospheric slant range visibility, meteorological conditions detection, and
atmospheric layering measurements, Appl. Optics, 56, 6440–6449, 2017.
Schappert, G. T.: Technique for Measuring Visibility, Appl. Optics, 10,
2325, https://doi.org/10.1364/ao.10.002325, 1971.
Schmeisser, L., Backman, J., Ogren, J. A., Andrews, E., Asmi, E., Starkweather, S., Uttal, T., Fiebig, M., Sharma, S., Eleftheriadis, K., Vratolis, S., Bergin, M., Tunved, P., and Jefferson, A.: Seasonality of aerosol optical properties in the Arctic, Atmos. Chem. Phys., 18, 11599–11622, https://doi.org/10.5194/acp-18-11599-2018, 2018.
Schuster, G. L., Dubovik, O., and Holben, B. N.: Angstrom exponent and
bimodal aerosol size distributions, J. Geophys. Res.-Atmos., 111, D07207, https://doi.org/10.1029/2005JD006328, 2006.
Shang, X., Xia, H., Dou, X., Shangguan, M., Li, M., Wang, C., Qiu, J., Zhao,
L., and Lin, S.: Adaptive inversion algorithm for 1.5
µm visibility
lidar incorporating in situ Angstrom wavelength exponent, Opt. Comm., 418, 129–134, https://doi.org/10.1016/j.optcom.2018.03.009, 2017.
Shibata, T., Shiraishi, K., Shiobara, M., Iwasaki, S., and Takano, T.:
Seasonal variations in high Arctic free tropospheric aerosols over
Ny-Ålesund, Svalbard, observed by ground-based lidar, J. Geophys. Res.-Atmos., 123, 12353–12367, https://doi.org/10.1029/2018JD028973, 2018.
Sicard, M., Rocadenbosch, F., Reba, M. N. M., Comerón, A., Tomás, S., García-Vízcaino, D., Batet, O., Barrios, R., Kumar, D., and Baldasano, J. M.: Seasonal variability of aerosol optical properties observed by means of a Raman lidar at an EARLINET site over Northeastern Spain, Atmos. Chem. Phys., 11, 175–190, https://doi.org/10.5194/acp-11-175-2011, 2011.
Smith, D. A., Harris, M., Coffey, A. S., Mikkelsen, T., Jørgensen, H. E.,
Mann, J., and Danielian, R.: Wind lidar evaluation at the Danish wind test site in Høvsøre, Wind Energy, 9, 87–93, https://doi.org/10.1002/we.193, 2006.
Stanier, C. O., Khlystov, A. Y., and Pandis, S. N.: Ambient aerosol size
distributions and number concentrations measured during the Pittsburgh Air
Quality Study (PAQS), Atmos. Environ., 38, 3275–3284, https://doi.org/10.1016/j.atmosenv.2004.03.020, 2004.
Twomey, S. and Howell, H. B.: The Relative Merit of White and Monochromatic
Light for the Determination of Visibility by Backscattering Measurements,
Appl. Optics, 4, 501–506, 1965.
Vogt, H.: Visibility Measurement Using Backscattered Light, J. Atmos. Sci.,
25, 912–91, https://doi.org/10.1175/1520-0469(1968)025<0912:VMUBL>2.0.CO;2, 1968.
Wedding, J. B., Carlson, R. W., Stukel, J. J., and Bazzaz, F. A.: Aerosol
deposition on plant leaves, Environ. Sci. Technol., 9, 151–153, https://doi.org/10.1021/es60100a004, 1975.
Winker, D. M., Tackett, J. L., Getzewich, B. J., Liu, Z., Vaughan, M. A., and Rogers, R. R.: The global 3-D distribution of tropospheric aerosols as characterized by CALIOP, Atmos. Chem. Phys., 13, 3345–3361, https://doi.org/10.5194/acp-13-3345-2013, 2013.
Werner C., Streicher J., Leike I., Münkel C.: Visibility and Cloud
Lidar, in: Lidar, edited by: Weitkamp, C., Springer Series in Optical Sciences, Springer, New York, NY, 102, https://doi.org/10.1007/0-387-25101-4_6,
2005.
Young, S. A. and Vaughan, M. A.: The Retrieval of Profiles of Particulate
Extinction from Cloud-Aerosol Lidar Infrared Pathfinder Satellite
Observations (CALIPSO) Data: Algorithm Description, J. Atmos. Ocean.
Technol., 26, 1105–1119, https://doi.org/10.1175/2008jtecha1221.1, 2009.