Articles | Volume 15, issue 19
https://doi.org/10.5194/amt-15-5545-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/amt-15-5545-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
A new hot-stage microscopy technique for measuring temperature-dependent viscosities of aerosol particles and its application to farnesene secondary organic aerosol
Kristian J. Kiland
Department of Chemistry, The University of British Columbia,
Vancouver, British Columbia V6T 1Z1, Canada
Kevin L. Marroquin
Department of Chemistry, The University of British Columbia,
Vancouver, British Columbia V6T 1Z1, Canada
Natalie R. Smith
Department of Chemistry, University of California Irvine, Irvine,
California 92697, USA
Shaun Xu
Department of Chemistry, The University of British Columbia,
Vancouver, British Columbia V6T 1Z1, Canada
Sergey A. Nizkorodov
Department of Chemistry, University of California Irvine, Irvine,
California 92697, USA
Department of Chemistry, The University of British Columbia,
Vancouver, British Columbia V6T 1Z1, Canada
Related authors
No articles found.
Liviana K. Klein, Allan K. Bertram, Andreas Zuend, Florence Gregson, and Ulrich K. Krieger
EGUsphere, https://doi.org/10.5194/egusphere-2024-1459, https://doi.org/10.5194/egusphere-2024-1459, 2024
Short summary
Short summary
The viscosity of ammonium nitrate–sucrose–H2O was quantified with three methods ranging from liquid to solid state depending on the relative humidity. Moreover, the corresponding estimated internal aerosol mixing times remain below an hour for most tropospheric conditions, making equilibrium partitioning a reasonable assumption.
Fabian Mahrt, Long Peng, Julia Zaks, Yuanzhou Huang, Paul E. Ohno, Natalie R. Smith, Florence K. A. Gregson, Yiming Qin, Celia L. Faiola, Scot T. Martin, Sergey A. Nizkorodov, Markus Ammann, and Allan K. Bertram
Atmos. Chem. Phys., 22, 13783–13796, https://doi.org/10.5194/acp-22-13783-2022, https://doi.org/10.5194/acp-22-13783-2022, 2022
Short summary
Short summary
The number of condensed phases in mixtures of different secondary organic aerosol (SOA) types determines their impact on air quality and climate. Here we observe the number of phases in individual particles that contain mixtures of two different types of SOA. We find that SOA mixtures can form one- or two-phase particles, depending on the difference in the average oxygen-to-carbon (O / C) ratios of the two SOA types that are internally mixed within individual particles.
Alexandra L. Klodt, Marley Adamek, Monica Dibley, Sergey A. Nizkorodov, and Rachel E. O'Brien
Atmos. Chem. Phys., 22, 10155–10171, https://doi.org/10.5194/acp-22-10155-2022, https://doi.org/10.5194/acp-22-10155-2022, 2022
Short summary
Short summary
We investigated photochemistry of a secondary organic aerosol under three different conditions: in a dilute aqueous solution mimicking cloud droplets, in a solution of concentrated ammonium sulfate mimicking deliquesced aerosol, and in an organic matrix mimicking dry organic aerosol. We find that rate and mechanisms of photochemistry depend sensitively on these conditions, suggesting that the same organic aerosol compounds will degrade at different rates depending on their local environment.
Soleil E. Worthy, Anand Kumar, Yu Xi, Jingwei Yun, Jessie Chen, Cuishan Xu, Victoria E. Irish, Pierre Amato, and Allan K. Bertram
Atmos. Chem. Phys., 21, 14631–14648, https://doi.org/10.5194/acp-21-14631-2021, https://doi.org/10.5194/acp-21-14631-2021, 2021
Short summary
Short summary
We studied the effect of (NH4)2SO4 on the immersion freezing of non-mineral dust ice-nucleating substances (INSs) and mineral dusts. (NH4)2SO4 had no effect on the median freezing temperature of 9 of the 10 tested non-mineral dust INSs, slightly decreased that of the other, and increased that of all the mineral dusts. The difference in the response of mineral dust and non-mineral dust INSs to (NH4)2SO4 suggests that they nucleate ice and/or interact with (NH4)2SO4 via different mechanisms.
Robert Wagner, Luisa Ickes, Allan K. Bertram, Nora Els, Elena Gorokhova, Ottmar Möhler, Benjamin J. Murray, Nsikanabasi Silas Umo, and Matthew E. Salter
Atmos. Chem. Phys., 21, 13903–13930, https://doi.org/10.5194/acp-21-13903-2021, https://doi.org/10.5194/acp-21-13903-2021, 2021
Short summary
Short summary
Sea spray aerosol particles are a mixture of inorganic salts and organic matter from phytoplankton organisms. At low temperatures in the upper troposphere, both inorganic and organic constituents can induce the formation of ice crystals and thereby impact cloud properties and climate. In this study, we performed experiments in a cloud simulation chamber with particles produced from Arctic seawater samples to quantify the relative contribution of inorganic and organic species in ice formation.
Fernanda Córdoba, Carolina Ramírez-Romero, Diego Cabrera, Graciela B. Raga, Javier Miranda, Harry Alvarez-Ospina, Daniel Rosas, Bernardo Figueroa, Jong Sung Kim, Jacqueline Yakobi-Hancock, Talib Amador, Wilfrido Gutierrez, Manuel García, Allan K. Bertram, Darrel Baumgardner, and Luis A. Ladino
Atmos. Chem. Phys., 21, 4453–4470, https://doi.org/10.5194/acp-21-4453-2021, https://doi.org/10.5194/acp-21-4453-2021, 2021
Short summary
Short summary
Most precipitation from deep clouds over the continents and in the intertropical convergence zone is strongly influenced by the presence of ice crystals whose formation requires the presence of aerosol particles. In the present study, the ability of three different aerosol types (i.e., marine aerosol, biomass burning, and African dust) to facilitate ice particle formation was assessed in the Yucatán Peninsula, Mexico.
Young-Chul Song, Ariana G. Bé, Scot T. Martin, Franz M. Geiger, Allan K. Bertram, Regan J. Thomson, and Mijung Song
Atmos. Chem. Phys., 20, 11263–11273, https://doi.org/10.5194/acp-20-11263-2020, https://doi.org/10.5194/acp-20-11263-2020, 2020
Short summary
Short summary
We report the liquid–liquid phase separation (LLPS) of organic aerosol consisting of α-pinene- and β-caryophyllene-derived ozonolysis products and commercial organic compounds. As compositional complexity increased from one to two organic species, LLPS occurred over a wider range of average O : C values (increasing from 0.44 to 0.67). These results provide further evidence that LLPS is likely frequent in organic aerosol particles in the troposphere, even in the absence of inorganic salt.
Luisa Ickes, Grace C. E. Porter, Robert Wagner, Michael P. Adams, Sascha Bierbauer, Allan K. Bertram, Merete Bilde, Sigurd Christiansen, Annica M. L. Ekman, Elena Gorokhova, Kristina Höhler, Alexei A. Kiselev, Caroline Leck, Ottmar Möhler, Benjamin J. Murray, Thea Schiebel, Romy Ullrich, and Matthew E. Salter
Atmos. Chem. Phys., 20, 11089–11117, https://doi.org/10.5194/acp-20-11089-2020, https://doi.org/10.5194/acp-20-11089-2020, 2020
Short summary
Short summary
The Arctic is a region where aerosols are scarce. Sea spray might be a potential source of aerosols acting as ice-nucleating particles. We investigate two common phytoplankton species (Melosira arctica and Skeletonema marinoi) and present their ice nucleation activity in comparison with Arctic seawater microlayer samples from different field campaigns. We also aim to understand the aerosolization process of marine biological samples and the potential effect on the ice nucleation activity.
W. Richard Leaitch, John K. Kodros, Megan D. Willis, Sarah Hanna, Hannes Schulz, Elisabeth Andrews, Heiko Bozem, Julia Burkart, Peter Hoor, Felicia Kolonjari, John A. Ogren, Sangeeta Sharma, Meng Si, Knut von Salzen, Allan K. Bertram, Andreas Herber, Jonathan P. D. Abbatt, and Jeffrey R. Pierce
Atmos. Chem. Phys., 20, 10545–10563, https://doi.org/10.5194/acp-20-10545-2020, https://doi.org/10.5194/acp-20-10545-2020, 2020
Short summary
Short summary
Black carbon is a factor in the warming of the Arctic atmosphere due to its ability to absorb light, but the uncertainty is high and few observations have been made in the high Arctic above 80° N. We combine airborne and ground-based observations in the springtime Arctic, at and above 80° N, with simulations from a global model to show that light absorption by black carbon may be much larger than modelled. However, the uncertainty remains high.
Arttu Ylisirniö, Angela Buchholz, Claudia Mohr, Zijun Li, Luis Barreira, Andrew Lambe, Celia Faiola, Eetu Kari, Taina Yli-Juuti, Sergey A. Nizkorodov, Douglas R. Worsnop, Annele Virtanen, and Siegfried Schobesberger
Atmos. Chem. Phys., 20, 5629–5644, https://doi.org/10.5194/acp-20-5629-2020, https://doi.org/10.5194/acp-20-5629-2020, 2020
Short summary
Short summary
We studied the chemical composition and volatility of secondary organic aerosol (SOA) particles formed from emissions of Scots pines and compared those results to SOA formed from α-pinene and from a sesquiterpene mixture. We found that SOA formed from single precursors cannot capture the properties of SOA formed from real plant emissions.
Lauren T. Fleming, Peng Lin, James M. Roberts, Vanessa Selimovic, Robert Yokelson, Julia Laskin, Alexander Laskin, and Sergey A. Nizkorodov
Atmos. Chem. Phys., 20, 1105–1129, https://doi.org/10.5194/acp-20-1105-2020, https://doi.org/10.5194/acp-20-1105-2020, 2020
Short summary
Short summary
We have explored the nature and stability of molecules that give biomass burning smoke its faint brown color. Different types of biomass fuels were burned and the resulting smoke was collected for a detailed chemical analysis. We found that brown molecules in smoke become less colored when they are irradiated by sunlight, but this photobleaching process is very slow. This means that biomass burning smoke will remain brown-colored for a long time and efficiently warm up the atmosphere.
Mijung Song, Adrian M. Maclean, Yuanzhou Huang, Natalie R. Smith, Sandra L. Blair, Julia Laskin, Alexander Laskin, Wing-Sy Wong DeRieux, Ying Li, Manabu Shiraiwa, Sergey A. Nizkorodov, and Allan K. Bertram
Atmos. Chem. Phys., 19, 12515–12529, https://doi.org/10.5194/acp-19-12515-2019, https://doi.org/10.5194/acp-19-12515-2019, 2019
Valentin Duflot, Pierre Tulet, Olivier Flores, Christelle Barthe, Aurélie Colomb, Laurent Deguillaume, Mickael Vaïtilingom, Anne Perring, Alex Huffman, Mark T. Hernandez, Karine Sellegri, Ellis Robinson, David J. O'Connor, Odessa M. Gomez, Frédéric Burnet, Thierry Bourrianne, Dominique Strasberg, Manon Rocco, Allan K. Bertram, Patrick Chazette, Julien Totems, Jacques Fournel, Pierre Stamenoff, Jean-Marc Metzger, Mathilde Chabasset, Clothilde Rousseau, Eric Bourrianne, Martine Sancelme, Anne-Marie Delort, Rachel E. Wegener, Cedric Chou, and Pablo Elizondo
Atmos. Chem. Phys., 19, 10591–10618, https://doi.org/10.5194/acp-19-10591-2019, https://doi.org/10.5194/acp-19-10591-2019, 2019
Short summary
Short summary
The Forests gAses aeRosols Clouds Exploratory (FARCE) campaign was conducted in March–April 2015 on the tropical island of La Réunion. For the first time, several scientific teams from different disciplines collaborated to provide reference measurements and characterization of La Réunion vegetation, volatile organic compounds (VOCs), biogenic VOCs (BVOCs), (bio)aerosols and composition of clouds, with a strong focus on the Maïdo mount slope area.
Erin Evoy, Adrian M. Maclean, Grazia Rovelli, Ying Li, Alexandra P. Tsimpidi, Vlassis A. Karydis, Saeid Kamal, Jos Lelieveld, Manabu Shiraiwa, Jonathan P. Reid, and Allan K. Bertram
Atmos. Chem. Phys., 19, 10073–10085, https://doi.org/10.5194/acp-19-10073-2019, https://doi.org/10.5194/acp-19-10073-2019, 2019
Short summary
Short summary
We measured the diffusion rates of organic molecules in a number of proxies for secondary organic aerosol (SOA) and compared measured diffusion with predictions from two relations: the Stokes–Einstein relation and a fractional Stokes–Einstein relation. The fractional relation does a better job of predicting diffusion rates in this case. Output from an atmospheric model shows that mixing times predicted using the two relations differ by up to 1 order of magnitude at an altitude of ~ 3 km.
Victoria E. Irish, Sarah J. Hanna, Yu Xi, Matthew Boyer, Elena Polishchuk, Mohamed Ahmed, Jessie Chen, Jonathan P. D. Abbatt, Michel Gosselin, Rachel Chang, Lisa A. Miller, and Allan K. Bertram
Atmos. Chem. Phys., 19, 7775–7787, https://doi.org/10.5194/acp-19-7775-2019, https://doi.org/10.5194/acp-19-7775-2019, 2019
Short summary
Short summary
The ocean is a source of atmospheric ice-nucleating particles (INPs). In this study we compared INPs measured in microlayer and bulk seawater in the Canadian Arctic in 2016 to those measured in 2014. A strong negative correlation between salinity and freezing temperatures was observed, possibly due to INPs associated with melting sea ice. In addition, although spatial patterns of INPs and salinities were similar in 2014 and 2016, the concentrations of INPs were on average higher in 2016.
Brigitte Rooney, Ran Zhao, Yuan Wang, Kelvin H. Bates, Ajay Pillarisetti, Sumit Sharma, Seema Kundu, Tami C. Bond, Nicholas L. Lam, Bora Ozaltun, Li Xu, Varun Goel, Lauren T. Fleming, Robert Weltman, Simone Meinardi, Donald R. Blake, Sergey A. Nizkorodov, Rufus D. Edwards, Ankit Yadav, Narendra K. Arora, Kirk R. Smith, and John H. Seinfeld
Atmos. Chem. Phys., 19, 7719–7742, https://doi.org/10.5194/acp-19-7719-2019, https://doi.org/10.5194/acp-19-7719-2019, 2019
Short summary
Short summary
Approximately 3 billion people worldwide cook with solid fuels, such as wood, charcoal, and agricultural residues, that are often combusted in inefficient cookstoves. Here, we simulate the distribution of the two major health-damaging outdoor pollution species (PM2.5 and O3) using state-of-the-science emissions databases and atmospheric chemical transport models to estimate the impact of household combustion on ambient air quality in India.
Luis A. Ladino, Graciela B. Raga, Harry Alvarez-Ospina, Manuel A. Andino-Enríquez, Irma Rosas, Leticia Martínez, Eva Salinas, Javier Miranda, Zyanya Ramírez-Díaz, Bernardo Figueroa, Cedric Chou, Allan K. Bertram, Erika T. Quintana, Luis A. Maldonado, Agustín García-Reynoso, Meng Si, and Victoria E. Irish
Atmos. Chem. Phys., 19, 6147–6165, https://doi.org/10.5194/acp-19-6147-2019, https://doi.org/10.5194/acp-19-6147-2019, 2019
Short summary
Short summary
This study presents results obtained during a field campaign conducted in the tropical village of Sisal located on the coast of the Gulf of Mexico. Air masses arriving in Sisal during the passage of cold fronts have surprisingly higher ice-nucleating particle (INP) concentrations than the campaign average. The high concentrations of INPs at T > −15 C and the supermicron size of the INPs suggest that biological particles may have been a significant contributor to the INP population in Sisal.
Angela Buchholz, Andrew T. Lambe, Arttu Ylisirniö, Zijun Li, Olli-Pekka Tikkanen, Celia Faiola, Eetu Kari, Liqing Hao, Olli Luoma, Wei Huang, Claudia Mohr, Douglas R. Worsnop, Sergey A. Nizkorodov, Taina Yli-Juuti, Siegfried Schobesberger, and Annele Virtanen
Atmos. Chem. Phys., 19, 4061–4073, https://doi.org/10.5194/acp-19-4061-2019, https://doi.org/10.5194/acp-19-4061-2019, 2019
Short summary
Short summary
We studied the evaporation of α-pinene secondary organic aerosol particles in clean air to derive their volatility from the observed size changes. We found that the particles became more resilient to evaporation with increased oxidative age, possibly increasing their lifetime in the atmosphere. Also, increased relative humidity increased the particle evaporation. Mass spectrometry measurements of the particles at different stages of evaporation revealed some water-induced composition changes.
Meng Si, Erin Evoy, Jingwei Yun, Yu Xi, Sarah J. Hanna, Alina Chivulescu, Kevin Rawlings, Daniel Veber, Andrew Platt, Daniel Kunkel, Peter Hoor, Sangeeta Sharma, W. Richard Leaitch, and Allan K. Bertram
Atmos. Chem. Phys., 19, 3007–3024, https://doi.org/10.5194/acp-19-3007-2019, https://doi.org/10.5194/acp-19-3007-2019, 2019
Short summary
Short summary
We investigated the importance of mineral dust, sea spray aerosol, and anthropogenic aerosol to the ice-nucleating particle (INP) population in the Canadian Arctic during spring 2016. The results suggest that mineral dust transported from the Gobi Desert was a major source of the INP population studied, and that sea spray aerosol decreased the ice-nucleating ability of mineral dust. The results should be useful for testing and improving models used to predict INPs and climate in the Arctic.
Jonathan P. D. Abbatt, W. Richard Leaitch, Amir A. Aliabadi, Allan K. Bertram, Jean-Pierre Blanchet, Aude Boivin-Rioux, Heiko Bozem, Julia Burkart, Rachel Y. W. Chang, Joannie Charette, Jai P. Chaubey, Robert J. Christensen, Ana Cirisan, Douglas B. Collins, Betty Croft, Joelle Dionne, Greg J. Evans, Christopher G. Fletcher, Martí Galí, Roya Ghahreman, Eric Girard, Wanmin Gong, Michel Gosselin, Margaux Gourdal, Sarah J. Hanna, Hakase Hayashida, Andreas B. Herber, Sareh Hesaraki, Peter Hoor, Lin Huang, Rachel Hussherr, Victoria E. Irish, Setigui A. Keita, John K. Kodros, Franziska Köllner, Felicia Kolonjari, Daniel Kunkel, Luis A. Ladino, Kathy Law, Maurice Levasseur, Quentin Libois, John Liggio, Martine Lizotte, Katrina M. Macdonald, Rashed Mahmood, Randall V. Martin, Ryan H. Mason, Lisa A. Miller, Alexander Moravek, Eric Mortenson, Emma L. Mungall, Jennifer G. Murphy, Maryam Namazi, Ann-Lise Norman, Norman T. O'Neill, Jeffrey R. Pierce, Lynn M. Russell, Johannes Schneider, Hannes Schulz, Sangeeta Sharma, Meng Si, Ralf M. Staebler, Nadja S. Steiner, Jennie L. Thomas, Knut von Salzen, Jeremy J. B. Wentzell, Megan D. Willis, Gregory R. Wentworth, Jun-Wei Xu, and Jacqueline D. Yakobi-Hancock
Atmos. Chem. Phys., 19, 2527–2560, https://doi.org/10.5194/acp-19-2527-2019, https://doi.org/10.5194/acp-19-2527-2019, 2019
Short summary
Short summary
The Arctic is experiencing considerable environmental change with climate warming, illustrated by the dramatic decrease in sea-ice extent. It is important to understand both the natural and perturbed Arctic systems to gain a better understanding of how they will change in the future. This paper summarizes new insights into the relationships between Arctic aerosol particles and climate, as learned over the past five or so years by a large Canadian research consortium, NETCARE.
Dagny A. Ullmann, Mallory L. Hinks, Adrian M. Maclean, Christopher L. Butenhoff, James W. Grayson, Kelley Barsanti, Jose L. Jimenez, Sergey A. Nizkorodov, Saeid Kamal, and Allan K. Bertram
Atmos. Chem. Phys., 19, 1491–1503, https://doi.org/10.5194/acp-19-1491-2019, https://doi.org/10.5194/acp-19-1491-2019, 2019
Short summary
Short summary
We measured the viscosity and diffusion of organic molecules in secondary organic aerosol (SOA) generated from the ozonolysis of limonene. The results suggest that the mixing times of large organics in the SOA studied are short (< 1 h) for conditions found in the planetary boundary layer. The results also show that the Stokes–Einstein equation gives accurate predictions of diffusion coefficients of large organics within the studied SOA up to a viscosity of 102 to 104 Pa s.
Zhijian Li, Sergey A. Nizkorodov, Hong Chen, Xiaohui Lu, Xin Yang, and Jianmin Chen
Atmos. Chem. Phys., 19, 1343–1356, https://doi.org/10.5194/acp-19-1343-2019, https://doi.org/10.5194/acp-19-1343-2019, 2019
Short summary
Short summary
In this work, we found that acrolein, the smallest α,β-unsaturated aldehyde, has the potential to form light-absorbing heterocyclic secondary organic aerosol. In the gaseous phase, acrolein can react with gaseous ammonia, forming 3-picoline. In the liquid phase, the dissolved acrolein can react with ammonium to form higher molecular-weight pyridinium compounds. All the pyridinium compounds can increase the light absorptivity of aerosol particles.
Victoria E. Irish, Sarah J. Hanna, Megan D. Willis, Swarup China, Jennie L. Thomas, Jeremy J. B. Wentzell, Ana Cirisan, Meng Si, W. Richard Leaitch, Jennifer G. Murphy, Jonathan P. D. Abbatt, Alexander Laskin, Eric Girard, and Allan K. Bertram
Atmos. Chem. Phys., 19, 1027–1039, https://doi.org/10.5194/acp-19-1027-2019, https://doi.org/10.5194/acp-19-1027-2019, 2019
Short summary
Short summary
Ice nucleating particles (INPs) are atmospheric particles that catalyse the formation of ice crystals in clouds. INPs influence the Earth's radiative balance and hydrological cycle. In this study we measured the concentrations of INPs in the Canadian Arctic marine boundary layer. Average INP concentrations fell within the range measured in other marine boundary layer locations. We also found that mineral dust is a more important contributor to the INP population than sea spray aerosol.
Meng Si, Victoria E. Irish, Ryan H. Mason, Jesús Vergara-Temprado, Sarah J. Hanna, Luis A. Ladino, Jacqueline D. Yakobi-Hancock, Corinne L. Schiller, Jeremy J. B. Wentzell, Jonathan P. D. Abbatt, Ken S. Carslaw, Benjamin J. Murray, and Allan K. Bertram
Atmos. Chem. Phys., 18, 15669–15685, https://doi.org/10.5194/acp-18-15669-2018, https://doi.org/10.5194/acp-18-15669-2018, 2018
Short summary
Short summary
Using the concentrations of ice-nucleating particles (INPs) and total aerosol particles measured at three coastal marine sites, the ice-nucleating ability of aerosol particles on a per number basis and a per surface-area basis were determined as a function of size. The ice-nucleating ability was strongly dependent on size, with larger particles being more efficient. This type of information can help determine the sources of INPs and constrain the future modelling of INPs and mixed-phase clouds.
Lauren T. Fleming, Robert Weltman, Ankit Yadav, Rufus D. Edwards, Narendra K. Arora, Ajay Pillarisetti, Simone Meinardi, Kirk R. Smith, Donald R. Blake, and Sergey A. Nizkorodov
Atmos. Chem. Phys., 18, 15169–15182, https://doi.org/10.5194/acp-18-15169-2018, https://doi.org/10.5194/acp-18-15169-2018, 2018
Short summary
Short summary
Brushwood- and dung-burning cookstoves are used for cooking and heating and influence ambient air quality for millions of people. We report emission factors from the more efficient cookstove, the chulha, compared to the smoldering angithi, for carbon dioxide, carbon monoxide, and 76 volatile organic compounds. This comprehensive gas emission inventory should inform policy makers about the magnitude of the effect of cookstoves on the air quality in India.
Mijung Song, Suhan Ham, Ryan J. Andrews, Yuan You, and Allan K. Bertram
Atmos. Chem. Phys., 18, 12075–12084, https://doi.org/10.5194/acp-18-12075-2018, https://doi.org/10.5194/acp-18-12075-2018, 2018
Yangxi Chu, Erin Evoy, Saeid Kamal, Young Chul Song, Jonathan P. Reid, Chak K. Chan, and Allan K. Bertram
Atmos. Meas. Tech., 11, 4809–4822, https://doi.org/10.5194/amt-11-4809-2018, https://doi.org/10.5194/amt-11-4809-2018, 2018
Short summary
Short summary
The viscosity of erythritol, a tetrol found in aerosol particles, is highly uncertain. To help resolve this uncertainty, we measured the viscosities of
erythritol–water particles using rectangular-area fluorescence recovery after photobleaching and aerosol optical tweezers techniques. These results
should help improve the understanding of the viscosity of secondary organic aerosol particles. In addition, we present an intercomparison of techniques
for measuring the viscosity of particles.
John K. Kodros, Sarah J. Hanna, Allan K. Bertram, W. Richard Leaitch, Hannes Schulz, Andreas B. Herber, Marco Zanatta, Julia Burkart, Megan D. Willis, Jonathan P. D. Abbatt, and Jeffrey R. Pierce
Atmos. Chem. Phys., 18, 11345–11361, https://doi.org/10.5194/acp-18-11345-2018, https://doi.org/10.5194/acp-18-11345-2018, 2018
Short summary
Short summary
The mixing state of black carbon is one of the key uncertainties limiting the ability of models to estimate the direct radiative effect. In this work, we present aircraft measurements from the Canadian Arctic of coating thickness as a function of black carbon core diameter and black-carbon-containing particle number fractions. We use these measurements to inform estimates of the direct radiative effect in Arctic aerosol simulations.
Wing-Sy Wong DeRieux, Ying Li, Peng Lin, Julia Laskin, Alexander Laskin, Allan K. Bertram, Sergey A. Nizkorodov, and Manabu Shiraiwa
Atmos. Chem. Phys., 18, 6331–6351, https://doi.org/10.5194/acp-18-6331-2018, https://doi.org/10.5194/acp-18-6331-2018, 2018
Short summary
Short summary
The phase transition of organic particles between glassy and semi-solid states occurs at the glass transition temperature. We developed a method to predict glass transition temperatures and the viscosity of secondary organic aerosols using molecular composition, with consistent results with viscosity measurements. The viscosity of biomass burning particles was also estimated using the chemical composition measured by high-resolution mass spectrometry with two different ionization techniques.
Shupeng Zhu, Jeremy R. Horne, Julia Montoya-Aguilera, Mallory L. Hinks, Sergey A. Nizkorodov, and Donald Dabdub
Atmos. Chem. Phys., 18, 3641–3657, https://doi.org/10.5194/acp-18-3641-2018, https://doi.org/10.5194/acp-18-3641-2018, 2018
Short summary
Short summary
For the first time, the interaction between ammonia and secondary organic aerosol (SOA) is integrated in an air quality model and investigated on a national scale. Our original analysis from simulation results indicates that a significant reduction in gas-phase ammonia is possible due to its uptake onto SOA. Significant impact is also observed in the concentration of particulate matter, with a distinct spatial pattern over different seasons.
Lauren T. Fleming, Peng Lin, Alexander Laskin, Julia Laskin, Robert Weltman, Rufus D. Edwards, Narendra K. Arora, Ankit Yadav, Simone Meinardi, Donald R. Blake, Ajay Pillarisetti, Kirk R. Smith, and Sergey A. Nizkorodov
Atmos. Chem. Phys., 18, 2461–2480, https://doi.org/10.5194/acp-18-2461-2018, https://doi.org/10.5194/acp-18-2461-2018, 2018
Short summary
Short summary
Household cooking emissions in India, which rely on traditional meal preparation with dung- and brushwood-fueled cookstoves, produce copious amounts of particulate matter. Detailed chemical analysis of the compounds found in this particulate matter detected a large number of previously unidentified nitrogen-containing organic compounds, originating from dung-fueled cookstoves.
Mallory L. Hinks, Julia Montoya-Aguilera, Lucas Ellison, Peng Lin, Alexander Laskin, Julia Laskin, Manabu Shiraiwa, Donald Dabdub, and Sergey A. Nizkorodov
Atmos. Chem. Phys., 18, 1643–1652, https://doi.org/10.5194/acp-18-1643-2018, https://doi.org/10.5194/acp-18-1643-2018, 2018
Short summary
Short summary
We have observed a strong effect of relative humidity on the composition of particulate matter produced from the oxidation of toluene in clean air. At higher relative humidity, there was a significant reduction in the fraction of high-molecular-weight compounds present in the particles. The amount of particulate matter also decreased at higher relative humidity. The main implication of this study is that water vapor participates in the photooxidation of toluene in a complicated way.
Sangeeta Sharma, W. Richard Leaitch, Lin Huang, Daniel Veber, Felicia Kolonjari, Wendy Zhang, Sarah J. Hanna, Allan K. Bertram, and John A. Ogren
Atmos. Chem. Phys., 17, 15225–15243, https://doi.org/10.5194/acp-17-15225-2017, https://doi.org/10.5194/acp-17-15225-2017, 2017
Short summary
Short summary
A new and unique data set on BC properties at the highest latitude observatory in the world, at Alert, Canada, evaluates three techniques for estimating black carbon (BC) and gives seasonal best estimates of the BC mass concentrations and BC mass absorption coefficients (MAC) for 2.5 years of data. As a short-lived climate forcer, better estimates of the properties of BC are necessary to ensure accurate modelling of aerosol climate forcing of the Arctic atmosphere for mitigation purposes.
Douglas B. Collins, Julia Burkart, Rachel Y.-W. Chang, Martine Lizotte, Aude Boivin-Rioux, Marjolaine Blais, Emma L. Mungall, Matthew Boyer, Victoria E. Irish, Guillaume Massé, Daniel Kunkel, Jean-Éric Tremblay, Tim Papakyriakou, Allan K. Bertram, Heiko Bozem, Michel Gosselin, Maurice Levasseur, and Jonathan P. D. Abbatt
Atmos. Chem. Phys., 17, 13119–13138, https://doi.org/10.5194/acp-17-13119-2017, https://doi.org/10.5194/acp-17-13119-2017, 2017
Short summary
Short summary
The sources of aerosol particles and their growth to sizes large enough to act as cloud droplet seeds is of major importance to climate since clouds exert substantial control over the atmospheric energy balance. Using ship-board measurements from two summers in the Canadian Arctic, aerosol formation events were related to co-sampled atmospheric and oceanic parameters, providing insight into factors that drive particle formation and motivating further study of ocean–atmosphere interactions.
Adrian M. Maclean, Christopher L. Butenhoff, James W. Grayson, Kelley Barsanti, Jose L. Jimenez, and Allan K. Bertram
Atmos. Chem. Phys., 17, 13037–13048, https://doi.org/10.5194/acp-17-13037-2017, https://doi.org/10.5194/acp-17-13037-2017, 2017
Short summary
Short summary
Using laboratory data, meteorological fields and a chemical transport model, we investigated how often mixing times are < 1 h within SOA in the planetary boundary layer (PBL). Based on viscosity data for alpha-pinene SOA generated using mass concentrations of ~1000 µg m −3, mixing times in biogenic SOA are < 1h most of the time.
Julia Montoya-Aguilera, Jeremy R. Horne, Mallory L. Hinks, Lauren T. Fleming, Véronique Perraud, Peng Lin, Alexander Laskin, Julia Laskin, Donald Dabdub, and Sergey A. Nizkorodov
Atmos. Chem. Phys., 17, 11605–11621, https://doi.org/10.5194/acp-17-11605-2017, https://doi.org/10.5194/acp-17-11605-2017, 2017
Short summary
Short summary
Various plant species emit a chemical compound called indole under stressed conditions or during flowering events. Our experiments show that indole can be oxidized in the atmosphere to produce a brownish haze containing well-known indole-derived dyes, such as indigo dye. An airshed model that includes indole chemistry shows that indole aerosol makes a significant contribution to the total aerosol burden and to visibility.
Mijung Song, Pengfei Liu, Scot T. Martin, and Allan K. Bertram
Atmos. Chem. Phys., 17, 11261–11271, https://doi.org/10.5194/acp-17-11261-2017, https://doi.org/10.5194/acp-17-11261-2017, 2017
Paul J. DeMott, Thomas C. J. Hill, Markus D. Petters, Allan K. Bertram, Yutaka Tobo, Ryan H. Mason, Kaitlyn J. Suski, Christina S. McCluskey, Ezra J. T. Levin, Gregory P. Schill, Yvonne Boose, Anne Marie Rauker, Anna J. Miller, Jake Zaragoza, Katherine Rocci, Nicholas E. Rothfuss, Hans P. Taylor, John D. Hader, Cedric Chou, J. Alex Huffman, Ulrich Pöschl, Anthony J. Prenni, and Sonia M. Kreidenweis
Atmos. Chem. Phys., 17, 11227–11245, https://doi.org/10.5194/acp-17-11227-2017, https://doi.org/10.5194/acp-17-11227-2017, 2017
Short summary
Short summary
The consistency and complementarity of different methods for measuring the numbers of particles capable of forming ice in clouds are examined in the atmosphere. Four methods for collecting particles for later (offline) freezing studies are compared to a common instantaneous method. Results support very good agreement in many cases but also biases that require further research. Present capabilities and uncertainties for obtaining global data on these climate-relevant aerosols are thus defined.
Victoria E. Irish, Pablo Elizondo, Jessie Chen, Cédric Chou, Joannie Charette, Martine Lizotte, Luis A. Ladino, Theodore W. Wilson, Michel Gosselin, Benjamin J. Murray, Elena Polishchuk, Jonathan P. D. Abbatt, Lisa A. Miller, and Allan K. Bertram
Atmos. Chem. Phys., 17, 10583–10595, https://doi.org/10.5194/acp-17-10583-2017, https://doi.org/10.5194/acp-17-10583-2017, 2017
Short summary
Short summary
The ocean is a possible source of atmospheric ice-nucleating particles (INPs). In this study we found that INPs were ubiquitous in the sea-surface microlayer and bulk seawater in the Canadian Arctic. A strong negative correlation was observed between salinity and freezing temperatures (after correcting for freezing point depression). Heat and filtration treatments of the samples showed that the INPs were likely biological material with sizes between 0.02 μm and 0.2 μm in diameter.
James W. Grayson, Erin Evoy, Mijung Song, Yangxi Chu, Adrian Maclean, Allena Nguyen, Mary Alice Upshur, Marzieh Ebrahimi, Chak K. Chan, Franz M. Geiger, Regan J. Thomson, and Allan K. Bertram
Atmos. Chem. Phys., 17, 8509–8524, https://doi.org/10.5194/acp-17-8509-2017, https://doi.org/10.5194/acp-17-8509-2017, 2017
Short summary
Short summary
The viscosities of four polyols and three saccharides mixed with water were determined. The results from the polyol studies suggest viscosity increases by 1–2 orders of magnitude with the addition of an OH functional group to a carbon backbone. The results from the saccharide studies suggest that the viscosity of highly oxidized compounds is strongly dependent on molar mass and oligomerization of highly oxidized compounds in atmospheric SOM could lead to large increases in viscosity.
Katrina M. Macdonald, Sangeeta Sharma, Desiree Toom, Alina Chivulescu, Sarah Hanna, Allan K. Bertram, Andrew Platt, Mike Elsasser, Lin Huang, David Tarasick, Nathan Chellman, Joseph R. McConnell, Heiko Bozem, Daniel Kunkel, Ying Duan Lei, Greg J. Evans, and Jonathan P. D. Abbatt
Atmos. Chem. Phys., 17, 5775–5788, https://doi.org/10.5194/acp-17-5775-2017, https://doi.org/10.5194/acp-17-5775-2017, 2017
Short summary
Short summary
Rapid climate changes within the Arctic have highlighted existing uncertainties in the transport of contaminants to Arctic snow. Fresh snow samples collected frequently through the winter season were analyzed for major constituents creating a unique record of Arctic snow. Comparison with simultaneous atmospheric measurements provides insight into the driving processes in the transfer of contaminants from air to snow. The relative importance of deposition mechanisms over the season is proposed.
Jesús Vergara-Temprado, Benjamin J. Murray, Theodore W. Wilson, Daniel O'Sullivan, Jo Browse, Kirsty J. Pringle, Karin Ardon-Dryer, Allan K. Bertram, Susannah M. Burrows, Darius Ceburnis, Paul J. DeMott, Ryan H. Mason, Colin D. O'Dowd, Matteo Rinaldi, and Ken S. Carslaw
Atmos. Chem. Phys., 17, 3637–3658, https://doi.org/10.5194/acp-17-3637-2017, https://doi.org/10.5194/acp-17-3637-2017, 2017
Short summary
Short summary
We quantify the importance in the atmosphere of different aerosol components to contribute to global ice-nucleating particles concentrations (INPs). The aim is to improve the way atmospheric cloud-ice processes are represented in climate models so they will be able to make better predictions in the future. We found that a kind of dust (K-feldspar), together with marine organic aerosols, can help to improve the representation of INPs and explain most of their observations.
Andrew D. Teakles, Rita So, Bruce Ainslie, Robert Nissen, Corinne Schiller, Roxanne Vingarzan, Ian McKendry, Anne Marie Macdonald, Daniel A. Jaffe, Allan K. Bertram, Kevin B. Strawbridge, W. Richard Leaitch, Sarah Hanna, Desiree Toom, Jonathan Baik, and Lin Huang
Atmos. Chem. Phys., 17, 2593–2611, https://doi.org/10.5194/acp-17-2593-2017, https://doi.org/10.5194/acp-17-2593-2017, 2017
Short summary
Short summary
We present a case study of an intense wildfire smoke plume from Siberia that affected the air quality across the Pacific Northwest on 6–10 July 2012. The transport, entrainment, and chemical composition of the plume are examined to characterize the event. Ambient O3 and PM2.5 from surface monitoring is contrast to modelled baseline air quality estimates to show the overall contribution of the plume to exceedances in O3 and PM2.5 air quality standards and objectives that occurred.
Yuri Chenyakin, Dagny A. Ullmann, Erin Evoy, Lindsay Renbaum-Wolff, Saeid Kamal, and Allan K. Bertram
Atmos. Chem. Phys., 17, 2423–2435, https://doi.org/10.5194/acp-17-2423-2017, https://doi.org/10.5194/acp-17-2423-2017, 2017
Short summary
Short summary
Viscosity measurements, along with the Stokes–Einstein relation, have been used to estimate the diffusion rates of organics within SOA particles. To test the Stokes–Einstein relation, we measured the diffusion coefficients of three fluorescent organic dyes within sucrose–water solutions with varying water activity. The diffusion coefficients were measured using fluorescence recovery after photobleaching. The results should be useful for predicting the diffusion of organics with SOA particles.
Adam P. Bateman, Zhaoheng Gong, Tristan H. Harder, Suzane S. de Sá, Bingbing Wang, Paulo Castillo, Swarup China, Yingjun Liu, Rachel E. O'Brien, Brett B. Palm, Hung-Wei Shiu, Glauber G. Cirino, Ryan Thalman, Kouji Adachi, M. Lizabeth Alexander, Paulo Artaxo, Allan K. Bertram, Peter R. Buseck, Mary K. Gilles, Jose L. Jimenez, Alexander Laskin, Antonio O. Manzi, Arthur Sedlacek, Rodrigo A. F. Souza, Jian Wang, Rahul Zaveri, and Scot T. Martin
Atmos. Chem. Phys., 17, 1759–1773, https://doi.org/10.5194/acp-17-1759-2017, https://doi.org/10.5194/acp-17-1759-2017, 2017
Short summary
Short summary
The occurrence of nonliquid and liquid physical states of submicron atmospheric particulate matter (PM) downwind of an urban region in central Amazonia was investigated. Air masses representing background conditions, urban pollution, and regional- and continental-scale biomass were measured. Anthropogenic influences contributed to the presence of nonliquid PM in the atmospheric particle population, while liquid PM dominated during periods of biogenic influence.
Mijung Song, Pengfei F. Liu, Sarah J. Hanna, Rahul A. Zaveri, Katie Potter, Yuan You, Scot T. Martin, and Allan K. Bertram
Atmos. Chem. Phys., 16, 8817–8830, https://doi.org/10.5194/acp-16-8817-2016, https://doi.org/10.5194/acp-16-8817-2016, 2016
Lindsay Renbaum-Wolff, Mijung Song, Claudia Marcolli, Yue Zhang, Pengfei F. Liu, James W. Grayson, Franz M. Geiger, Scot T. Martin, and Allan K. Bertram
Atmos. Chem. Phys., 16, 7969–7979, https://doi.org/10.5194/acp-16-7969-2016, https://doi.org/10.5194/acp-16-7969-2016, 2016
James W. Grayson, Yue Zhang, Anke Mutzel, Lindsay Renbaum-Wolff, Olaf Böge, Saeid Kamal, Hartmut Herrmann, Scot T. Martin, and Allan K. Bertram
Atmos. Chem. Phys., 16, 6027–6040, https://doi.org/10.5194/acp-16-6027-2016, https://doi.org/10.5194/acp-16-6027-2016, 2016
Short summary
Short summary
The effect of several experimental parameters on the viscosity of secondary organic material (SOM) generated from the ozonolysis of α-pinene has been studied. The results demonstrate that the viscosity of SOM depends on the particle mass concentration at which SOM is produced, and the relative humidity (RH) at which the SOM is studied. Hence, particle mass concentration and RH should be considered when comparing experimental results for SOM, or extrapolating laboratory results to the atmosphere.
Xianda Gong, Ci Zhang, Hong Chen, Sergey A. Nizkorodov, Jianmin Chen, and Xin Yang
Atmos. Chem. Phys., 16, 5399–5411, https://doi.org/10.5194/acp-16-5399-2016, https://doi.org/10.5194/acp-16-5399-2016, 2016
Short summary
Short summary
In this study, we used a Single Particle Aerosol Mass Spectrometer and a Single Particle Soot Photometer to investigate the chemical and physical properties of black carbon (BC) aerosols during a regional air pollution episode in urban Shanghai. BC containing particles were mainly attributed to biomass burning and traffic emissions. We observed a group of highly aged traffic emitted particles with a relatively small BC core (~ 60–80 nm) and a very thick absolute coating thickness (~ 130–300 nm).
R. H. Mason, M. Si, C. Chou, V. E. Irish, R. Dickie, P. Elizondo, R. Wong, M. Brintnell, M. Elsasser, W. M. Lassar, K. M. Pierce, W. R. Leaitch, A. M. MacDonald, A. Platt, D. Toom-Sauntry, R. Sarda-Estève, C. L. Schiller, K. J. Suski, T. C. J. Hill, J. P. D. Abbatt, J. A. Huffman, P. J. DeMott, and A. K. Bertram
Atmos. Chem. Phys., 16, 1637–1651, https://doi.org/10.5194/acp-16-1637-2016, https://doi.org/10.5194/acp-16-1637-2016, 2016
R. H. Mason, M. Si, J. Li, C. Chou, R. Dickie, D. Toom-Sauntry, C. Pöhlker, J. D. Yakobi-Hancock, L. A. Ladino, K. Jones, W. R. Leaitch, C. L. Schiller, J. P. D. Abbatt, J. A. Huffman, and A. K. Bertram
Atmos. Chem. Phys., 15, 12547–12566, https://doi.org/10.5194/acp-15-12547-2015, https://doi.org/10.5194/acp-15-12547-2015, 2015
Y. Zhang, M. S. Sanchez, C. Douet, Y. Wang, A. P. Bateman, Z. Gong, M. Kuwata, L. Renbaum-Wolff, B. B. Sato, P. F. Liu, A. K. Bertram, F. M. Geiger, and S. T. Martin
Atmos. Chem. Phys., 15, 7819–7829, https://doi.org/10.5194/acp-15-7819-2015, https://doi.org/10.5194/acp-15-7819-2015, 2015
Short summary
Short summary
The present work estimates the viscosity of submicron organic particles while they are still suspended as an aerosol without further post-processing techniques that can possibly alter the properties of semi-volatile materials. Results imply that atmospheric particles, at least those similar to the ones of this study and for low- to middle-RH regimes, can reach equilibrium or react rather slowly with the surrounding gas phase on time scales even longer than the residence time in the atmosphere.
J. W. Grayson, M. Song, M. Sellier, and A. K. Bertram
Atmos. Meas. Tech., 8, 2463–2472, https://doi.org/10.5194/amt-8-2463-2015, https://doi.org/10.5194/amt-8-2463-2015, 2015
R. H. Mason, C. Chou, C. S. McCluskey, E. J. T. Levin, C. L. Schiller, T. C. J. Hill, J. A. Huffman, P. J. DeMott, and A. K. Bertram
Atmos. Meas. Tech., 8, 2449–2462, https://doi.org/10.5194/amt-8-2449-2015, https://doi.org/10.5194/amt-8-2449-2015, 2015
M. Song, P. F. Liu, S. J. Hanna, Y. J. Li, S. T. Martin, and A. K. Bertram
Atmos. Chem. Phys., 15, 5145–5159, https://doi.org/10.5194/acp-15-5145-2015, https://doi.org/10.5194/acp-15-5145-2015, 2015
J. C. Schroder, S. J. Hanna, R. L. Modini, A. L. Corrigan, S. M. Kreidenwies, A. M. Macdonald, K. J. Noone, L. M. Russell, W. R. Leaitch, and A. K. Bertram
Atmos. Chem. Phys., 15, 1367–1383, https://doi.org/10.5194/acp-15-1367-2015, https://doi.org/10.5194/acp-15-1367-2015, 2015
Y. You and A. K. Bertram
Atmos. Chem. Phys., 15, 1351–1365, https://doi.org/10.5194/acp-15-1351-2015, https://doi.org/10.5194/acp-15-1351-2015, 2015
Short summary
Short summary
The first set of studies illustrates that the liquid/liquid phase separation relative humidity (SRH) does not depend strongly on molecular weight. The second set of studies shows that for most particle types and temperature range studied, SRH does not depend strongly on temperature. SRH did depend strongly on temperature for particles containing α,4-dihydroxy-3-methoxybenzeneacetic acid mixed with ammonium bisulfate due to a combination of low temperature and low water content.
J. D. Yakobi-Hancock, L. A. Ladino, A. K. Bertram, J. A. Huffman, K. Jones, W. R. Leaitch, R. H. Mason, C. L. Schiller, D. Toom-Sauntry, J. P. S. Wong, and J. P. D. Abbatt
Atmos. Chem. Phys., 14, 12307–12317, https://doi.org/10.5194/acp-14-12307-2014, https://doi.org/10.5194/acp-14-12307-2014, 2014
Short summary
Short summary
As one aspect of the NETwork on Climate and Aerosols: addressing key uncertainties in Remote Canadian Environments, measurements of the cloud condensation nucleation properties of 50 nm and 100 nm aerosol particles were conducted at Ucluelet on the west coast of Vancouver Island in August 2013. The most efficient cloud condensation nuclei arose when the organic to sulfate ratio of the aerosol was lowest and when winds arrived from the west after transport through the marine boundary layer.
D. I. Haga, S. M. Burrows, R. Iannone, M. J. Wheeler, R. H. Mason, J. Chen, E. A. Polishchuk, U. Pöschl, and A. K. Bertram
Atmos. Chem. Phys., 14, 8611–8630, https://doi.org/10.5194/acp-14-8611-2014, https://doi.org/10.5194/acp-14-8611-2014, 2014
Y. You, L. Renbaum-Wolff, and A. K. Bertram
Atmos. Chem. Phys., 13, 11723–11734, https://doi.org/10.5194/acp-13-11723-2013, https://doi.org/10.5194/acp-13-11723-2013, 2013
S. A. Epstein, E. Tapavicza, F. Furche, and S. A. Nizkorodov
Atmos. Chem. Phys., 13, 9461–9477, https://doi.org/10.5194/acp-13-9461-2013, https://doi.org/10.5194/acp-13-9461-2013, 2013
J. A. Huffman, A. J. Prenni, P. J. DeMott, C. Pöhlker, R. H. Mason, N. H. Robinson, J. Fröhlich-Nowoisky, Y. Tobo, V. R. Després, E. Garcia, D. J. Gochis, E. Harris, I. Müller-Germann, C. Ruzene, B. Schmer, B. Sinha, D. A. Day, M. O. Andreae, J. L. Jimenez, M. Gallagher, S. M. Kreidenweis, A. K. Bertram, and U. Pöschl
Atmos. Chem. Phys., 13, 6151–6164, https://doi.org/10.5194/acp-13-6151-2013, https://doi.org/10.5194/acp-13-6151-2013, 2013
L. Renbaum-Wolff, J. W. Grayson, and A. K. Bertram
Atmos. Chem. Phys., 13, 791–802, https://doi.org/10.5194/acp-13-791-2013, https://doi.org/10.5194/acp-13-791-2013, 2013
Related subject area
Subject: Aerosols | Technique: Laboratory Measurement | Topic: Instruments and Platforms
Rapid quantitative analysis of semi-volatile organic compounds in indoor surface film using direct analysis in real time mass spectrometry: a case study on phthalates
Exploring non-soluble particles in hailstones through innovative confocal laser and scanning electron microscopy techniques
A comprehensive evaluation of enhanced temperature influence on gas and aerosol chemistry in the lamp-enclosed oxidation flow reactor (OFR) system
A Novel Methodology for Assessing the Hygroscopicity of Aerosol Filter Samples
An oxidation flow reactor for simulating and accelerating secondary aerosol formation in aerosol liquid water and cloud droplets
Surface equilibrium vapor pressure of organic nanoparticles measured from the dynamic-aerosol-size electrical mobility spectrometer
Quality assurance and quality control of atmospheric organosulfates measured using hydrophilic interaction liquid chromatography (HILIC)
Micro-PINGUIN: microtiter-plate-based instrument for ice nucleation detection in gallium with an infrared camera
Characterization of the Vaporization Inlet for Aerosols (VIA) for online measurements of particulate highly oxygenated organic molecules (HOMs)
Development and characterization of a high-performance single-particle aerosol mass spectrometer (HP-SPAMS)
Merging holography, fluorescence, and machine learning for in situ, continuous characterization and classification of airborne microplastics
Characterization of the planar differential mobility analyzer (DMA P5): resolving power, transmission efficiency and its application to atmospheric relevant cluster measurements
Airborne bacteria viability and air quality: a protocol to quantitatively investigate the possible correlation by an atmospheric simulation chamber
The viscosity and surface tension of supercooled levitated droplets determined by excitation of shape oscillations
Acoustic levitation of pollen and visualisation of hygroscopic behaviour
Concept, absolute calibration, and validation of a new benchtop laser imaging polar nephelometer
A new smog chamber system for atmospheric multiphase chemistry study: design and characterization
Stability assessment of organic sulfur and organosulfate compounds in filter samples for quantification by Fourier- transform infrared spectroscopy
Design and evaluation of a thermal precipitation aerosol electrometer (TPAE)
An automated online field instrument to quantify the oxidative potential of aerosol particles via ascorbic acid oxidation
Online measurement of highly oxygenated compounds from organic aerosol
The AERosol and TRACe gas Collector (AERTRACC): an online-measurement-controlled sampler for source-resolved emission analysis
Quantitative chemical assay of nanogram-level particulate matter using aerosol mass spectrometry: characterization of particles collected from uncrewed atmospheric measurement platforms
An optimised organic carbon ∕ elemental carbon (OC ∕ EC) fraction separation method for radiocarbon source apportionment applied to low-loaded Arctic aerosol filters
Investigating the dependence of mineral dust depolarization on complex refractive index and size with a laboratory polarimeter at 180.0° lidar backscattering angle
Evaluation of a low-cost dryer for a low-cost optical particle counter
Effects of temperature and salinity on bubble-bursting aerosol formation simulated with a bubble-generating chamber
Characterization of a modified printed optical particle spectrometer for high-frequency and high-precision laboratory and field measurements
Design and fabrication of an electrostatic precipitator for infrared spectroscopy
Combined application of online FIGAERO-CIMS and offline LC-Orbitrap mass spectrometry (MS) to characterize the chemical composition of secondary organic aerosol (SOA) in smog chamber studies
High-frequency gaseous and particulate chemical characterization using extractive electrospray ionization mass spectrometry (Dual-Phase-EESI-TOF)
An evaluation of the heat test for the ice-nucleating ability of minerals and biological material
Development, characterization, and application of an improved online reactive oxygen species analyzer based on the Monitor for AeRosols and Gases in ambient Air (MARGA)
Characterization of soot produced by the mini inverted soot generator with an atmospheric simulation chamber
LED-based solar simulator to study photochemistry over a wide temperature range in the large simulation chamber AIDA
Laboratory evaluation of the scattering matrix of ragweed, ash, birch and pine pollen towards pollen classification
Cloud condensation nuclei (CCN) activity analysis of low-hygroscopicity aerosols using the aerodynamic aerosol classifier (AAC)
Characterisation of the Manchester Aerosol Chamber facility
A study on the fragmentation of sulfuric acid and dimethylamine clusters inside an atmospheric pressure interface time-of-flight mass spectrometer
A semi-automated instrument for cellular oxidative potential evaluation (SCOPE) of water-soluble extracts of ambient particulate matter
Utilizing an electrical low-pressure impactor to indirectly probe water uptake via particle bounce measurements
Calibration and evaluation of a broad supersaturation scanning (BS2) cloud condensation nuclei counter for rapid measurement of particle hygroscopicity and cloud condensation nuclei (CCN) activity
Correcting bias in log-linear instrument calibrations in the context of chemical ionization mass spectrometry
Effects of aerosol size and coating thickness on the molecular detection using extractive electrospray ionization
The nano-scanning electrical mobility spectrometer (nSEMS) and its application to size distribution measurements of 1.5–25 nm particles
A dual-droplet approach for measuring the hygroscopicity of aqueous aerosol
A method for liquid spectrophotometric measurement of total and water-soluble iron and copper in ambient aerosols
Efficacy of a portable, moderate-resolution, fast-scanning differential mobility analyzer for ambient aerosol size distribution measurements
Comparative characterization of the performance of bio-aerosol nebulizers in connection with atmospheric simulation chambers
Coupling a gas chromatograph simultaneously to a flame ionization detector and chemical ionization mass spectrometer for isomer-resolved measurements of particle-phase organic compounds
Ying Zhou, Longkun He, Jiang Tan, Jiang Zhou, and Yingjun Liu
Atmos. Meas. Tech., 17, 6415–6423, https://doi.org/10.5194/amt-17-6415-2024, https://doi.org/10.5194/amt-17-6415-2024, 2024
Short summary
Short summary
We present a sensitive DART-MS/MS method for the fast and accurate quantification of semi-volatile organic compounds (SVOCs) in organic films without the need for pre-treatment. This method offers greatly improved repeatability in the absence of internal standards. By utilizing MS/MS analysis, the separation of isomeric components within films becomes possible. These developments increase the feasibility of the DART-MS approach for studying the dynamics of SVOCs in indoor surface films.
Anthony C. Bernal Ayala, Angela K. Rowe, Lucia E. Arena, William O. Nachlas, and Maria L. Asar
Atmos. Meas. Tech., 17, 5561–5579, https://doi.org/10.5194/amt-17-5561-2024, https://doi.org/10.5194/amt-17-5561-2024, 2024
Short summary
Short summary
Hail is a challenging weather phenomenon to forecast due to an incomplete understanding of hailstone formation. Microscopy temperature limitations required previous studies to melt hail for analysis. This paper introduces a unique technique using a plastic cover to preserve particles in their location within the hailstone without melting. Therefore, CLSM and SEM–EDS microscopes can be used to determine individual particle sizes and their chemical composition related to hail-formation processes.
Tianle Pan, Andrew T. Lambe, Weiwei Hu, Yicong He, Minghao Hu, Huaishan Zhou, Xinming Wang, Qingqing Hu, Hui Chen, Yue Zhao, Yuanlong Huang, Doug R. Worsnop, Zhe Peng, Melissa A. Morris, Douglas A. Day, Pedro Campuzano-Jost, Jose-Luis Jimenez, and Shantanu H. Jathar
Atmos. Meas. Tech., 17, 4915–4939, https://doi.org/10.5194/amt-17-4915-2024, https://doi.org/10.5194/amt-17-4915-2024, 2024
Short summary
Short summary
This study systematically characterizes the temperature enhancement in the lamp-enclosed oxidation flow reactor (OFR). The enhancement varied multiple dimensional factors, emphasizing the complexity of temperature inside of OFR. The effects of temperature on the flow field and gas- or particle-phase reaction inside OFR were also evaluated with experiments and model simulations. Finally, multiple mitigation strategies were demonstrated to minimize this temperature increase.
Nagendra Raparthi, Anthony S. Wexler, and Ann M. Dillner
EGUsphere, https://doi.org/10.5194/egusphere-2024-2482, https://doi.org/10.5194/egusphere-2024-2482, 2024
Short summary
Short summary
Quantifying the composition-dependent hygroscopicity of aerosol particles is essential for advancing our understanding of atmospheric processes. Existing methods do not integrate chemical composition with hygroscopicity. We developed a novel method to assess the water uptake of particles sampled on aerosol filters at relative humidity levels up to 97 % and link it with their composition. This approach allows for the separation of total water uptake into inorganic and organic components.
Ningjin Xu, Chen Le, David R. Cocker, Kunpeng Chen, Ying-Hsuan Lin, and Don R. Collins
Atmos. Meas. Tech., 17, 4227–4243, https://doi.org/10.5194/amt-17-4227-2024, https://doi.org/10.5194/amt-17-4227-2024, 2024
Short summary
Short summary
A flow-through reactor was developed that exposes known mixtures of gases or ambient air to very high concentrations of the oxidants that are responsible for much of the chemistry that takes place in the atmosphere. Like other reactors of its type, it is primarily used to study the formation of particulate matter from the oxidation of common gases. Unlike other reactors of its type, it can simulate the chemical reactions that occur in liquid water that is present in particles or cloud droplets.
Ella Häkkinen, Huan Yang, Runlong Cai, and Juha Kangasluoma
Atmos. Meas. Tech., 17, 4211–4225, https://doi.org/10.5194/amt-17-4211-2024, https://doi.org/10.5194/amt-17-4211-2024, 2024
Short summary
Short summary
We report measurements of evaporation kinetics and surface equilibrium vapor pressures for various laboratory-generated organic nanoparticles using the dynamic-aerosol-size electrical mobility spectrometer (DEMS), a recent advancement in aerosol process characterization. Our findings align well with literature values, demonstrating DEMS's effectiveness. We suggest future improvements to DEMS and anticipate its potential for probing aerosol-related kinetic processes with unknown mechanisms.
Ping Liu, Xiang Ding, Bo-Xuan Li, Yu-Qing Zhang, Daniel J. Bryant, and Xin-Ming Wang
Atmos. Meas. Tech., 17, 3067–3079, https://doi.org/10.5194/amt-17-3067-2024, https://doi.org/10.5194/amt-17-3067-2024, 2024
Short summary
Short summary
In this paper, we further optimize the measurement of atmospheric organosulfates by hydrophilic interaction liquid chromatography (HILIC), offering an improved method for quantifying and speciating atmospheric organosulfates. These efforts will contribute to a deeper understanding of secondary organic aerosol precursors, formation mechanisms, and the contribution of organosulfate to atmospheric aerosols, ultimately guiding research in the field of air pollution prevention and control.
Corina Wieber, Mads Rosenhøj Jeppesen, Kai Finster, Claus Melvad, and Tina Šantl-Temkiv
Atmos. Meas. Tech., 17, 2707–2719, https://doi.org/10.5194/amt-17-2707-2024, https://doi.org/10.5194/amt-17-2707-2024, 2024
Short summary
Short summary
We developed a novel instrument to determine the quality and number of biological and non-biological particles, with respect to their ice-promoting capacity as a function of temperature. The measurement uncertainty was determined, and the instrument produced reliable results. Further, repeated measurements of the same suspension showed that the instrument had high reproducibility.
Jian Zhao, Valter Mickwitz, Yuanyuan Luo, Ella Häkkinen, Frans Graeffe, Jiangyi Zhang, Hilkka Timonen, Manjula Canagaratna, Jordan E. Krechmer, Qi Zhang, Markku Kulmala, Juha Kangasluoma, Douglas Worsnop, and Mikael Ehn
Atmos. Meas. Tech., 17, 1527–1543, https://doi.org/10.5194/amt-17-1527-2024, https://doi.org/10.5194/amt-17-1527-2024, 2024
Short summary
Short summary
Organic aerosol constitutes a significant portion of atmospheric fine particles but is less characterized due to its vast number of constituents. Recently, we developed a system for online measurements of particle-phase highly oxygenated organic molecules (HOMs). In this work, we systematically characterized the system, developed a new unit to enhance its performance, and demonstrated the essential role of thermograms in inferring volatility and quantifying HOMs in organic aerosols.
Xubing Du, Qinhui Xie, Qing Huang, Xuan Li, Junlin Yang, Zhihui Hou, Jingjing Wang, Xue Li, Zhen Zhou, Zhengxu Huang, Wei Gao, and Lei Li
Atmos. Meas. Tech., 17, 1037–1050, https://doi.org/10.5194/amt-17-1037-2024, https://doi.org/10.5194/amt-17-1037-2024, 2024
Short summary
Short summary
Currently, the limitations of single-particle mass spectrometry detection capabilities render it not yet well suited for analyzing complex aerosol components in low-concentration environments. In this study, a new high-performance single-particle aerosol mass spectrometer (HP-SPAMS) is developed to enhance instrument performance regarding the number of detected particles, transmission efficiency, resolution, and sensitivity, which will help in aerosol science.
Nicholas D. Beres, Julia Burkart, Elias Graf, Yanick Zeder, Lea Ann Dailey, and Bernadett Weinzierl
EGUsphere, https://doi.org/10.5194/egusphere-2023-2853, https://doi.org/10.5194/egusphere-2023-2853, 2023
Short summary
Short summary
We tested a new method to identify airborne microplastics (MPs), merging imaging, fluorescence, and machine learning of single particles. We examined whether combining imaging and fluorescence data enhances classification accuracy compared to using each method separately and tested these methods with other particle types. The tested MPs have distinct fluorescence and a combined imaging + fluorescence method improves their detection, making meaningful progress in monitoring MPs in the atmosphere.
Zhengning Xu, Jian Gao, Zhuanghao Xu, Michel Attoui, Xiangyu Pei, Mario Amo-González, Kewei Zhang, and Zhibin Wang
Atmos. Meas. Tech., 16, 5995–6006, https://doi.org/10.5194/amt-16-5995-2023, https://doi.org/10.5194/amt-16-5995-2023, 2023
Short summary
Short summary
Planar differential mobility analyzers (DMAs) have higher ion transmission efficiency and sizing resolution compared to cylindrical DMAs and are more suitable for use with mass spectrometers (MSs). Performance of the latest planar DMA (P5) was characterized. Sizing resolution and ion transmission efficiency were 5–16 times and ∼10 times higher than cylindrical DMAs. Sulfuric acid clusters were measured by DMA(P5)-MSs. This technique can be applied for natural products and biomolecule analysis.
Virginia Vernocchi, Elena Abd El, Marco Brunoldi, Silvia Giulia Danelli, Elena Gatta, Tommaso Isolabella, Federico Mazzei, Franco Parodi, Paolo Prati, and Dario Massabò
Atmos. Meas. Tech., 16, 5479–5493, https://doi.org/10.5194/amt-16-5479-2023, https://doi.org/10.5194/amt-16-5479-2023, 2023
Short summary
Short summary
Bioaerosol are airborne particles or droplets that contain living organisms or biological materials, such as bacteria, viruses, fungi, pollen, or other organic matter. The study of the relationship between bioaerosol viability and air quality or meteorological conditions is an open field, and running experiments of the bioareosol viability in an atmospheric simulation chamber gives the possibility to set up well-defined conditions to evaluate the interaction between bioaerosol and pollutants.
Mohit Singh, Stephanie Helen Jones, Alexei Kiselev, Denis Duft, and Thomas Leisner
Atmos. Meas. Tech., 16, 5205–5215, https://doi.org/10.5194/amt-16-5205-2023, https://doi.org/10.5194/amt-16-5205-2023, 2023
Short summary
Short summary
We introduce a novel method for simultaneous measurement of the viscosity and surface tension of metastable liquids. Our approach is based on the phase analysis of excited shape oscillations in levitated droplets. It is applicable to a wide range of atmospheric conditions and can monitor changes in real time. The technique holds great promise for investigating the effect of atmospheric processing on the viscosity and surface tension of solution droplets in equilibrium with water vapour.
Sophie A. Mills, Adam Milsom, Christian Pfrang, A. Rob MacKenzie, and Francis D. Pope
Atmos. Meas. Tech., 16, 4885–4898, https://doi.org/10.5194/amt-16-4885-2023, https://doi.org/10.5194/amt-16-4885-2023, 2023
Short summary
Short summary
Pollen grains are important components of the atmosphere and have the potential to impact upon cloud processes via their ability to help in the formation of rain droplets. This study investigates the hygroscopicity of two different pollen species using an acoustic levitator. Pollen grains are levitated, and their response to changes in relative humidity is investigated. A key advantage of this method is that it is possible study pollen shape under varying environmental conditions.
Alireza Moallemi, Robin L. Modini, Benjamin T. Brem, Barbara Bertozzi, Philippe Giaccari, and Martin Gysel-Beer
Atmos. Meas. Tech., 16, 3653–3678, https://doi.org/10.5194/amt-16-3653-2023, https://doi.org/10.5194/amt-16-3653-2023, 2023
Short summary
Short summary
Polarimetric data, i.e., the angular and polarization dependence of light scattering by aerosols, contain ample information on optical and microphysical properties. Retrieval of these properties is a central approach in aerosol remote sensing. We present a description, calibration, validation, and a first application of a new benchtop polar nephelometer, which provides in situ polarimetric measurements of an aerosol. Such data facilitate agreement between retrieval results and independent data.
Taomou Zong, Zhijun Wu, Junrui Wang, Kai Bi, Wenxu Fang, Yanrong Yang, Xuena Yu, Zhier Bao, Xiangxinyue Meng, Yuheng Zhang, Song Guo, Yang Chen, Chunshan Liu, Yue Zhang, Shao-Meng Li, and Min Hu
Atmos. Meas. Tech., 16, 3679–3692, https://doi.org/10.5194/amt-16-3679-2023, https://doi.org/10.5194/amt-16-3679-2023, 2023
Short summary
Short summary
This study developed and characterized an indoor chamber system (AIR) to simulate atmospheric multiphase chemistry processes. The AIR chamber can accurately control temperature and relative humidity (RH) over a broad range and simulate diurnal variation of ambient atmospheric RH. The aerosol generation unit can generate organic-coating seed particles with different phase states. The AIR chamber demonstrates high-quality performance in simulating secondary aerosol formation.
Marife B. Anunciado, Miranda De Boskey, Laura Haines, Katarina Lindskog, Tracy Dombek, Satoshi Takahama, and Ann M. Dillner
Atmos. Meas. Tech., 16, 3515–3529, https://doi.org/10.5194/amt-16-3515-2023, https://doi.org/10.5194/amt-16-3515-2023, 2023
Short summary
Short summary
Organic sulfur compounds are used to identify sources and atmospheric processing of aerosol. Our paper evaluates the potential of using a non-destructive measurement technique to measure organic sulfur compounds in filter samples by assessing their chemical stability over time. Some were stable, but some evaporated or changed chemically. Future work includes evaluating the stability and potential interference of multiple organic sulfur compounds in laboratory mixtures and ambient aerosol.
Shipeng Kang, Tongzhu Yu, Yixin Yang, Jiguang Wang, Huaqiao Gui, Jianguo Liu, and Da-Ren Chen
Atmos. Meas. Tech., 16, 3245–3255, https://doi.org/10.5194/amt-16-3245-2023, https://doi.org/10.5194/amt-16-3245-2023, 2023
Short summary
Short summary
A new aerosol electrometer, the thermal precipitation aerosol electrometer (TPAE), was designed for particles in sizes less than 300 nm, and its prototype performance was experimentally evaluated. The TPAE combines the thermal precipitator in the disk-to-disk configuration with a microcurrent measurement circuit board (i.e., pre-amplifier) for measuring the current carried by collected particles. Our performance study shows that the TPAE performance is consistent with the reference.
Battist Utinger, Steven John Campbell, Nicolas Bukowiecki, Alexandre Barth, Benjamin Gfeller, Ray Freshwater, Hans-Rudolf Rüegg, and Markus Kalberer
Atmos. Meas. Tech., 16, 2641–2654, https://doi.org/10.5194/amt-16-2641-2023, https://doi.org/10.5194/amt-16-2641-2023, 2023
Short summary
Short summary
Exposure to atmospheric aerosols can lead to adverse health effect, but particle components responsible for this are unknown. Redox-active compounds, some with very short lifetimes, are considered to be a toxic class of compounds in particles. We developed the first online field instrument to quantify short-lived and stable redox-active compounds with a physiological assay based on ascorbic acid and a high time resolution and detection limits to allow measurements at unpolluted locations.
Ella Häkkinen, Jian Zhao, Frans Graeffe, Nicolas Fauré, Jordan E. Krechmer, Douglas Worsnop, Hilkka Timonen, Mikael Ehn, and Juha Kangasluoma
Atmos. Meas. Tech., 16, 1705–1721, https://doi.org/10.5194/amt-16-1705-2023, https://doi.org/10.5194/amt-16-1705-2023, 2023
Short summary
Short summary
Highly oxygenated compounds contribute to the formation and growth of atmospheric organic aerosol and thus impact the global climate. Knowledge of their transformations and fate after condensing into the particle phase has been limited by the lack of suitable detection techniques. Here, we present an online method for measuring highly oxygenated compounds from organic aerosol. We evaluate the performance of the method and demonstrate that the method is applicable to different organic species.
Julia Pikmann, Lasse Moormann, Frank Drewnick, and Stephan Borrmann
Atmos. Meas. Tech., 16, 1323–1341, https://doi.org/10.5194/amt-16-1323-2023, https://doi.org/10.5194/amt-16-1323-2023, 2023
Short summary
Short summary
Aerosols measured in complex environments are usually a mixture of emissions from different sources. To characterize sources individually, we developed a sampling system for particles and organic trace gases which is coupled to real-time data of physical and chemical aerosol properties, gas concentrations, and meteorological variables. Using suitable sampling conditions for individual aerosols which are compared with the real-time data the desired aerosols are sampled separately from each other.
Christopher R. Niedek, Fan Mei, Maria A. Zawadowicz, Zihua Zhu, Beat Schmid, and Qi Zhang
Atmos. Meas. Tech., 16, 955–968, https://doi.org/10.5194/amt-16-955-2023, https://doi.org/10.5194/amt-16-955-2023, 2023
Short summary
Short summary
This novel micronebulization aerosol mass spectrometry (MS) technique requires a low sample volume (10 μL) and can quantify nanogram levels of organic and inorganic particulate matter (PM) components when used with 34SO4. This technique was successfully applied to PM samples collected from uncrewed atmospheric measurement platforms and provided chemical information that agrees well with real-time data from a co-located aerosol chemical speciation monitor and offline data from secondary ion MS.
Martin Rauber, Gary Salazar, Karl Espen Yttri, and Sönke Szidat
Atmos. Meas. Tech., 16, 825–844, https://doi.org/10.5194/amt-16-825-2023, https://doi.org/10.5194/amt-16-825-2023, 2023
Short summary
Short summary
Carbon-containing aerosols from ambient air are analysed for radioactive isotope radiocarbon to determine the contribution from fossil-fuel emissions. Light-absorbing soot-like aerosols are isolated by water extraction and thermal separation. This separation is affected by artefacts, for which we developed a new correction method. The investigation of aerosols from the Arctic shows that our approach works well for such samples, where many artefacts are expected.
Alain Miffre, Danaël Cholleton, Clément Noël, and Patrick Rairoux
Atmos. Meas. Tech., 16, 403–417, https://doi.org/10.5194/amt-16-403-2023, https://doi.org/10.5194/amt-16-403-2023, 2023
Short summary
Short summary
The depolarization ratio of hematite, silica, Arizona and Asian dust is evaluated in a lab with a π-polarimeter operating at lidar 180 ° and at (355, 532) nm wavelengths. The hematite depolarization equals (10±1) % at 355 nm for coarser particles, while that of silica is (33±1) %. This huge difference is explained by accounting for the high imaginary part of the hematite complex refractive index, thus revealing the key role played by light absorption in mineral dust lidar depolarization.
Miriam Chacón-Mateos, Bernd Laquai, Ulrich Vogt, and Cosima Stubenrauch
Atmos. Meas. Tech., 15, 7395–7410, https://doi.org/10.5194/amt-15-7395-2022, https://doi.org/10.5194/amt-15-7395-2022, 2022
Short summary
Short summary
The study evaluates a low-cost dryer to avoid the negative effect of hygroscopic growth and fog droplets in the particulate matter (PM) concentrations of sensors. The results show a reduction in the overestimation of the PM but also an underestimation compared to reference devices. Special care is needed when designing a dryer as high temperatures change the sampled air by evaporating the most volatile particulate species. Low-cost dryers are very promising for different sensor applications.
Svetlana Sofieva, Eija Asmi, Nina S. Atanasova, Aino E. Heikkinen, Emeline Vidal, Jonathan Duplissy, Martin Romantschuk, Rostislav Kouznetsov, Jaakko Kukkonen, Dennis H. Bamford, Antti-Pekka Hyvärinen, and Mikhail Sofiev
Atmos. Meas. Tech., 15, 6201–6219, https://doi.org/10.5194/amt-15-6201-2022, https://doi.org/10.5194/amt-15-6201-2022, 2022
Short summary
Short summary
A new bubble-generating glass chamber design with an extensive set of aerosol production experiments is presented to re-evaluate bubble-bursting-mediated aerosol production as a function of water parameters: bubbling air flow, water salinity, and temperature. Our main findings suggest modest dependence of aerosol production on the water salinity and a strong dependence on temperature below ~ 10 °C.
Sabin Kasparoglu, Mohammad Maksimul Islam, Nicholas Meskhidze, and Markus D. Petters
Atmos. Meas. Tech., 15, 5007–5018, https://doi.org/10.5194/amt-15-5007-2022, https://doi.org/10.5194/amt-15-5007-2022, 2022
Short summary
Short summary
A modified version of a Handix Scientific printed optical particle spectrometer is introduced. The paper presents characterization experiments, including concentration, size, and time responses. Integration of an external multichannel analyzer card removes counting limitations of the original instrument. It is shown that the high-resolution light-scattering amplitude data can be used to sense particle-phase transitions.
Nikunj Dudani and Satoshi Takahama
Atmos. Meas. Tech., 15, 4693–4707, https://doi.org/10.5194/amt-15-4693-2022, https://doi.org/10.5194/amt-15-4693-2022, 2022
Short summary
Short summary
We designed and fabricated an aerosol collector with high collection efficiency that enables quantitative infrared spectroscopy analysis. By collecting particles on optical windows, typical substrate interferences are eliminated. New methods for fabricating aerosol devices using 3D printing with post-treatment to reduce the time and cost of prototyping are described.
Mao Du, Aristeidis Voliotis, Yunqi Shao, Yu Wang, Thomas J. Bannan, Kelly L. Pereira, Jacqueline F. Hamilton, Carl J. Percival, M. Rami Alfarra, and Gordon McFiggans
Atmos. Meas. Tech., 15, 4385–4406, https://doi.org/10.5194/amt-15-4385-2022, https://doi.org/10.5194/amt-15-4385-2022, 2022
Short summary
Short summary
Atmospheric chemistry plays a key role in the understanding of aerosol formation and air pollution. We designed chamber experiments for the characterization of secondary organic aerosol (SOA) from a biogenic precursor with inorganic seed. Our results highlight the advantages of a combination of online FIGAERO-CIMS and offline LC-Orbitrap MS analytical techniques to characterize the chemical composition of SOA in chamber studies.
Chuan Ping Lee, Mihnea Surdu, David M. Bell, Josef Dommen, Mao Xiao, Xueqin Zhou, Andrea Baccarini, Stamatios Giannoukos, Günther Wehrle, Pascal André Schneider, Andre S. H. Prevot, Jay G. Slowik, Houssni Lamkaddam, Dongyu Wang, Urs Baltensperger, and Imad El Haddad
Atmos. Meas. Tech., 15, 3747–3760, https://doi.org/10.5194/amt-15-3747-2022, https://doi.org/10.5194/amt-15-3747-2022, 2022
Short summary
Short summary
Real-time detection of both the gas and particle phase is needed to elucidate the sources and chemical reaction pathways of organic vapors and particulate matter. The Dual-EESI was developed to measure gas- and particle-phase species to provide new insights into aerosol sources or formation mechanisms. After characterizing the relative gas and particle response factors of EESI via organic aerosol uptake experiments, the Dual-EESI is more sensitive toward gas-phase analyes.
Martin I. Daily, Mark D. Tarn, Thomas F. Whale, and Benjamin J. Murray
Atmos. Meas. Tech., 15, 2635–2665, https://doi.org/10.5194/amt-15-2635-2022, https://doi.org/10.5194/amt-15-2635-2022, 2022
Short summary
Short summary
Mineral dust and particles of biological origin are important types of ice-nucleating particles (INPs) that can trigger ice formation of supercooled cloud droplets. Heat treatments are used to detect the presence of biological INPs in samples collected from the environment as the activity of mineral INPs is assumed unchanged, although not fully assessed. We show that the ice-nucleating ability of some minerals can change after heating and discuss how INP heat tests should be interpreted.
Jiyan Wu, Chi Yang, Chunyan Zhang, Fang Cao, Aiping Wu, and Yanlin Zhang
Atmos. Meas. Tech., 15, 2623–2633, https://doi.org/10.5194/amt-15-2623-2022, https://doi.org/10.5194/amt-15-2623-2022, 2022
Short summary
Short summary
We introduced an online method to simultaneously determine the content of inorganic salt ions and reactive oxygen species (ROS) in PM2.5 hour by hour. We verified the accuracy and precision of the instrument. And we got the daily changes in ROS and the main sources that affect ROS. This breakthrough enables the quantitative assessment of atmospheric particulate matter ROS at the diurnal scale, providing an effective tool to study sources and environmental impacts of ROS.
Virginia Vernocchi, Marco Brunoldi, Silvia G. Danelli, Franco Parodi, Paolo Prati, and Dario Massabò
Atmos. Meas. Tech., 15, 2159–2175, https://doi.org/10.5194/amt-15-2159-2022, https://doi.org/10.5194/amt-15-2159-2022, 2022
Short summary
Short summary
The performance of a mini inverted soot generator was investigated at a simulation chamber facility by studying the soot generated by ethylene and propane combustion, together with the number, size, optical properties, and EC / OC concentrations. Mass absorption coefficients and Ångström absorption exponents are compatible with the literature, with some differences. The characterization of MISG soot particles is fundamental to design and perform experiments in atmospheric simulation chambers.
Magdalena Vallon, Linyu Gao, Feng Jiang, Bianca Krumm, Jens Nadolny, Junwei Song, Thomas Leisner, and Harald Saathoff
Atmos. Meas. Tech., 15, 1795–1810, https://doi.org/10.5194/amt-15-1795-2022, https://doi.org/10.5194/amt-15-1795-2022, 2022
Short summary
Short summary
A LED-based light source has been constructed for the AIDA simulation chamber at the Karlsruhe Institute of Technology. It allows aerosol formation and ageing studies under atmospherically relevant illumination intensities and spectral characteristics at temperatures from –90 °C to 30 °C with the possibility of changing the photon flux and irradiation spectrum at any point. The first results of photolysis experiments with 2,3-pentanedione, iron oxalate and a brown carbon component are shown.
Danaël Cholleton, Émilie Bialic, Antoine Dumas, Pascal Kaluzny, Patrick Rairoux, and Alain Miffre
Atmos. Meas. Tech., 15, 1021–1032, https://doi.org/10.5194/amt-15-1021-2022, https://doi.org/10.5194/amt-15-1021-2022, 2022
Short summary
Short summary
While pollen impacts public health and the Earth’s climate, the identification of each pollen taxon remains challenging. In this context, a laboratory evaluation of the polarimetric light-scattering characteristics of ragweed, ash, birch and pine pollen, when embedded in ambient air, is here performed at two wavelengths. Interestingly, the achieved precision of the retrieved scattering matrix elements allows unequivocal light scattering characteristics of each studied taxon to be identified.
Kanishk Gohil and Akua A. Asa-Awuku
Atmos. Meas. Tech., 15, 1007–1019, https://doi.org/10.5194/amt-15-1007-2022, https://doi.org/10.5194/amt-15-1007-2022, 2022
Short summary
Short summary
This work develops a methodology and software to study and analyze the cloud-droplet-forming ability of aerosols with an aerodynamic aerosol classifier (AAC). This work quantifies the uncertainties in size-resolved measurements and subsequent uncertainties propagated to cloud droplet parameterizations. Lastly, we present the best practices for AAC cloud droplet measurement.
Yunqi Shao, Yu Wang, Mao Du, Aristeidis Voliotis, M. Rami Alfarra, Simon P. O'Meara, S. Fiona Turner, and Gordon McFiggans
Atmos. Meas. Tech., 15, 539–559, https://doi.org/10.5194/amt-15-539-2022, https://doi.org/10.5194/amt-15-539-2022, 2022
Short summary
Short summary
A comprehensive description and characterisation of the Manchester Aerosol Chamber (MAC) was conducted. The MAC has good temperature and relative humidity homogeneity, fast mixing times, and comparable losses of gases and particles with other chambers. The MAC's bespoke control system allows improved duty cycles and repeatable experiments. Moreover, the effect of contamination on performance was also investigated. It is highly recommended to regularly track the chamber's performance.
Dina Alfaouri, Monica Passananti, Tommaso Zanca, Lauri Ahonen, Juha Kangasluoma, Jakub Kubečka, Nanna Myllys, and Hanna Vehkamäki
Atmos. Meas. Tech., 15, 11–19, https://doi.org/10.5194/amt-15-11-2022, https://doi.org/10.5194/amt-15-11-2022, 2022
Short summary
Short summary
To study what is happening in the atmosphere, it is important to be able to measure the molecules and clusters present in it. In our work, we studied an artifact that happens inside a mass spectrometer, in particular the fragmentation of clusters. We were able to quantify the fragmentation and retrieve the correct concentration and composition of the clusters using our dual (experimental and theoretical) approach.
Sudheer Salana, Yixiang Wang, Joseph V. Puthussery, and Vishal Verma
Atmos. Meas. Tech., 14, 7579–7593, https://doi.org/10.5194/amt-14-7579-2021, https://doi.org/10.5194/amt-14-7579-2021, 2021
Short summary
Short summary
Oxidative potential (OP) of particulate matter (PM) is an important indicator of PM toxicity. However, no automated instrument has ever been developed to provide a rapid high-throughput analysis of cell-based OP measurements. Here, we developed a semi-automated instrument, the first of its kind, for measuring oxidative potential using rat alveolar cells. We also developed a dataset on the intrinsic cellular OP of several compounds commonly known to be present in ambient PM.
Kevin B. Fischer and Giuseppe A. Petrucci
Atmos. Meas. Tech., 14, 7565–7577, https://doi.org/10.5194/amt-14-7565-2021, https://doi.org/10.5194/amt-14-7565-2021, 2021
Short summary
Short summary
The viscosity of organic particles in atmospheric aerosol is sometimes correlated to bounce factor. It is generally accepted that more viscous particles will be more likely to bounce following acceleration toward and impaction on a surface. We demonstrate that use of multi-stage low-pressure impactors for this purpose may result in measurement artifacts that depend on chemical composition, particle size, and changing relative humidity. A hypothesis for the observed effect is presented.
Najin Kim, Yafang Cheng, Nan Ma, Mira L. Pöhlker, Thomas Klimach, Thomas F. Mentel, Ovid O. Krüger, Ulrich Pöschl, and Hang Su
Atmos. Meas. Tech., 14, 6991–7005, https://doi.org/10.5194/amt-14-6991-2021, https://doi.org/10.5194/amt-14-6991-2021, 2021
Short summary
Short summary
A broad supersaturation scanning CCN (BS2-CCN) system, in which particles are exposed to a range of supersaturation simultaneously, can measure a broad range of CCN activity distribution with a high time resolution. We describe how the BS2-CCN system can be effectively calibrated and which factors can affect the calibration curve. Intercomparison experiments between typical DMA-CCN and BS2-CCN measurements to evaluate the BS2-CCN system showed high correlation and good agreement.
Chenyang Bi, Jordan E. Krechmer, Manjula R. Canagaratna, and Gabriel Isaacman-VanWertz
Atmos. Meas. Tech., 14, 6551–6560, https://doi.org/10.5194/amt-14-6551-2021, https://doi.org/10.5194/amt-14-6551-2021, 2021
Short summary
Short summary
Calibration techniques have been recently developed to log-linearly correlate analyte sensitivity with CIMS operating conditions particularly for compounds without authentic standards. In this work, we examine the previously ignored bias in the log-linear-based calibration method and estimate an average bias of 30 %, with 1 order of magnitude for less sensitive compounds in some circumstances. A step-by-step guide was provided to reduce and even remove the bias.
Chuan Ping Lee, Mihnea Surdu, David M. Bell, Houssni Lamkaddam, Mingyi Wang, Farnoush Ataei, Victoria Hofbauer, Brandon Lopez, Neil M. Donahue, Josef Dommen, Andre S. H. Prevot, Jay G. Slowik, Dongyu Wang, Urs Baltensperger, and Imad El Haddad
Atmos. Meas. Tech., 14, 5913–5923, https://doi.org/10.5194/amt-14-5913-2021, https://doi.org/10.5194/amt-14-5913-2021, 2021
Short summary
Short summary
Extractive electrospray ionization mass spectrometry (EESI-MS) has been deployed for high throughput online detection of particles with minimal fragmentation. Our study elucidates the extraction mechanism between the particles and electrospray (ES) droplets of different properties. The results show that the extraction rate is likely affected by the coagulation rate between the particles and ES droplets. Once coagulated, the particles undergo complete extraction within the ES droplet.
Weimeng Kong, Stavros Amanatidis, Huajun Mai, Changhyuk Kim, Benjamin C. Schulze, Yuanlong Huang, Gregory S. Lewis, Susanne V. Hering, John H. Seinfeld, and Richard C. Flagan
Atmos. Meas. Tech., 14, 5429–5445, https://doi.org/10.5194/amt-14-5429-2021, https://doi.org/10.5194/amt-14-5429-2021, 2021
Short summary
Short summary
We present the design, modeling, and experimental characterization of the nano-scanning electrical mobility spectrometer (nSEMS), a recently developed instrument that probes particle physical properties in the 1.5–25 nm range. The nSEMS has proven to be extremely powerful in examining atmospheric nucleation and the subsequent growth of nanoparticles in the CERN CLOUD experiment, which provides a valuable asset to study atmospheric nanoparticles and to evaluate their impact on climate.
Jack M. Choczynski, Ravleen Kaur Kohli, Craig S. Sheldon, Chelsea L. Price, and James F. Davies
Atmos. Meas. Tech., 14, 5001–5013, https://doi.org/10.5194/amt-14-5001-2021, https://doi.org/10.5194/amt-14-5001-2021, 2021
Short summary
Short summary
Relative humidity (RH) and hygroscopicity play an important role in regulating the physical, chemical, and optical properties of aerosol. In this work, we develop a new method to characterize hygroscopicity using particle levitation. We levitate two droplets with an electrodynamic balance and measure their size with light-scattering methods using one droplet as a probe of the RH. We demonstrate highly accurate and precise measurements of the RH and hygroscopic growth of a range of samples.
Yuhan Yang, Dong Gao, and Rodney J. Weber
Atmos. Meas. Tech., 14, 4707–4719, https://doi.org/10.5194/amt-14-4707-2021, https://doi.org/10.5194/amt-14-4707-2021, 2021
Short summary
Short summary
Iron and copper are commonly found in ambient aerosols and have been linked to adverse health effects. We describe a relatively simple benchtop instrument that can be used to quantify these metals in aqueous solutions and verify the method by comparison with inductively coupled plasma mass spectrometry. The approach is based on forming light-absorbing metal–ligand complexes that can be measured with high sensitivity utilizing a long-path liquid waveguide capillary cell.
Stavros Amanatidis, Yuanlong Huang, Buddhi Pushpawela, Benjamin C. Schulze, Christopher M. Kenseth, Ryan X. Ward, John H. Seinfeld, Susanne V. Hering, and Richard C. Flagan
Atmos. Meas. Tech., 14, 4507–4516, https://doi.org/10.5194/amt-14-4507-2021, https://doi.org/10.5194/amt-14-4507-2021, 2021
Short summary
Short summary
We assess the performance of a highly portable mobility analyzer, the Spider DMA, in measuring ambient aerosol particle size distributions, with specific attention to its moderate sizing resolution (R=3). Long-term field testing showed excellent correlation with a conventional mobility analyzer (R=10) over the 17–500 nm range, suggesting that moderate resolution may be sufficient to obtain key properties of ambient size distributions, enabling smaller instruments and better counting statistics.
Silvia G. Danelli, Marco Brunoldi, Dario Massabò, Franco Parodi, Virginia Vernocchi, and Paolo Prati
Atmos. Meas. Tech., 14, 4461–4470, https://doi.org/10.5194/amt-14-4461-2021, https://doi.org/10.5194/amt-14-4461-2021, 2021
Short summary
Short summary
Experiments conducted inside confined artificial environments, such as atmospheric simulation chambers (ASCs), where atmospheric conditions and composition are controlled, can provide valuable information on bio-aerosol viability, dispersion, and impact. We focus here on the reproducible aerosolization and injection of viable microorganisms into an ASC, the first and crucial step of any experimental protocol to expose bio-aerosols to different atmospheric conditions.
Chenyang Bi, Jordan E. Krechmer, Graham O. Frazier, Wen Xu, Andrew T. Lambe, Megan S. Claflin, Brian M. Lerner, John T. Jayne, Douglas R. Worsnop, Manjula R. Canagaratna, and Gabriel Isaacman-VanWertz
Atmos. Meas. Tech., 14, 3895–3907, https://doi.org/10.5194/amt-14-3895-2021, https://doi.org/10.5194/amt-14-3895-2021, 2021
Short summary
Short summary
Measurement techniques that can achieve molecular characterizations are necessary to understand the differences of fate and transport within isomers produced in the atmospheric oxidation process. In this work, we develop an instrument to conduct isomer-resolved measurements of particle-phase organics. We assess the number of isomers per chemical formula in atmospherically relevant samples and examine the feasibility of extending the use of an existing instrument to a broader range of analytes.
Cited articles
Alpert, P. A., Dou, J., Corral Arroyo, P., Schneider, F., Xto, J., Luo, B.,
Peter, T., Huthwelker, T., Borca, C. N., Henzler, K. D., Schaefer, T.,
Herrmann, H., Raabe, J., Watts, B., Krieger, U. K., and Ammann, M.:
Photolytic radical persistence due to anoxia in viscous aerosol particles,
Nat. Commun., 12, 1–8, https://doi.org/10.1038/s41467-021-21913-x, 2021.
Angell, C. A.: Relaxation in liquids, polymers and plastic crystals –
strong/fragile patterns and problems, J. Non.-Cryst. Solids, 131–133, 13–31, https://doi.org/10.1016/0022-3093(91)90266-9, 1991.
Angell, C. A.: Entropy and fragility in supercooling liquids, J. Res. Natl.
Inst. Stan., 102, 171, https://doi.org/10.6028/jres.102.013, 1997.
Angell, C. A.: Liquid fragility and the glass transition in water and
aqueous solutions, Chem. Rev., 102, 2627–2650, https://doi.org/10.1021/cr000689q,
2002.
Baudry, J., Charlaix, E., Tonck, A., and Mazuyer, D.: Experimental Evidence
for a Large Slip Effect at a Nonwetting Fluid–Solid Interface, Langmuir, 17, 5232–5236, https://doi.org/10.1021/la0009994, 2001.
Bhushan, B., Wang, Y., and Maali, A.: Boundary Slip Study on Hydrophilic,
Hydrophobic, and Superhydrophobic Surfaces with Dynamic Atomic Force Microscopy, Langmuir, 25, 8117–8121, https://doi.org/10.1021/la900612s, 2009.
Bodsworth, A., Zobrist, B., and Bertram, A. K.: Inhibition of efflorescence
in mixed organic-inorganic particles at temperatures less than 250 K, Phys.
Chem. Chem. Phys., 12, 12259–12266, https://doi.org/10.1039/c0cp00572j, 2010.
Bouvier-Brown, N. C., Goldstein, A. H., Gilman, J. B., Kuster, W. C., and de Gouw, J. A.: In-situ ambient quantification of monoterpenes, sesquiterpenes, and related oxygenated compounds during BEARPEX 2007: implications for gas- and particle-phase chemistry, Atmos. Chem. Phys., 9, 5505–5518, https://doi.org/10.5194/acp-9-5505-2009, 2009.
Champion, W. M., Rothfuss, N. E., Petters, M. D., and Grieshop, A. P.:
Volatility and Viscosity Are Correlated in Terpene Secondary Organic Aerosol
Formed in a Flow Reactor, Environ. Sci. Technol. Lett., 6, 513–519,
https://doi.org/10.1021/acs.estlett.9b00412, 2019.
Cho, J. J., Law, B. M., and Rieutord, F.: Dipole-Dependent Slip of Newtonian
Liquids at Smooth Solid Hydrophobic Surfaces, Phys. Rev. Lett., 92, 166102,
https://doi.org/10.1103/PhysRevLett.92.166102, 2004.
Churaev, N. V, Sobolev, V. D., and Somov, A. N.: Slippage of Liquids over
Lyophobic Solid Surfaces, J. Colloid Interf. Sci., 97, 574–581, 1984.
Cottin-Bizonne, C., Jurine, S., Baudry, J., Crassous, J., and Restagno, F.:
Nanorheology: An investigation of the boundary condition at hydrophobic and
hydrophilic interfaces, Eur. Phys. J. E, 9, 47–53, https://doi.org/10.1140/epje/i2001-10112-9, 2002.
Cottin-Bizonne, C., Cross, B., Steinberger, A., and Charlaix, E.: Boundary
Slip on Smooth Hydrophobic Surfaces: Intrinsic Effects and Possible Artifacts, Phys. Rev. Lett., 94, 056102, https://doi.org/10.1103/PhysRevLett.94.056102, 2005.
Craig, V. S. J., Neto, C., and Williams, D. R. M.: Shear-Dependent Boundary
Slip in an Aqueous Newtonian Liquid, Phys. Rev. Lett., 87, 054504,
https://doi.org/10.1103/PhysRevLett.87.054504, 2001.
Dalton, A. B. and Nizkorodov, S. A.: Photochemical Degradation of
4-Nitrocatechol and 2,4-Dinitrophenol in a Sugar-Glass Secondary Organic
Aerosol Surrogate, Environ. Sci. Technol., 55, 14586–14594,
https://doi.org/10.1021/acs.est.1c04975, 2021.
Demond, A. H. and Lindner, A. S.: Estimation of interfacial tension between
organic liquid mixtures and water, Environ. Sci. Technol., 27, 2318–2331, 1993.
DeRieux, W.-S. W., Li, Y., Lin, P., Laskin, J., Laskin, A., Bertram, A. K., Nizkorodov, S. A., and Shiraiwa, M.: Predicting the glass transition temperature and viscosity of secondary organic material using molecular composition, Atmos. Chem. Phys., 18, 6331–6351, https://doi.org/10.5194/acp-18-6331-2018, 2018.
Ditto, J. C., Joo, T., Khare, P., Sheu, R., Takeuchi, M., Chen, Y., Xu, W.,
Bui, A. A. T., Sun, Y., Ng, N. L., and Gentner, D. R.: Effects of
Molecular-Level Compositional Variability in Organic Aerosol on Phase State
and Thermodynamic Mixing Behavior, Environ. Sci. Technol., 53, 13009–13018, https://doi.org/10.1021/acs.est.9b02664, 2019.
Ervens, B., Turpin, B. J., and Weber, R. J.: Secondary organic aerosol formation in cloud droplets and aqueous particles (aqSOA): a review of laboratory, field and model studies, Atmos. Chem. Phys., 11, 11069–11102, https://doi.org/10.5194/acp-11-11069-2011, 2011.
Evoy, E., Maclean, A. M., Rovelli, G., Li, Y., Tsimpidi, A. P., Karydis, V. A., Kamal, S., Lelieveld, J., Shiraiwa, M., Reid, J. P., and Bertram, A. K.: Predictions of diffusion rates of large organic molecules in secondary organic aerosols using the Stokes–Einstein and fractional Stokes–Einstein relations, Atmos. Chem. Phys., 19, 10073–10085, https://doi.org/10.5194/acp-19-10073-2019, 2019.
Evoy, E., Kamal, S., Patey, G. N., Martin, S. T., and Bertram, A. K.: Unified
Description of Diffusion Coefficients from Small to Large Molecules in
Organic-Water Mixtures, J. Phys. Chem. A, 124, 2301–2308,
https://doi.org/10.1021/acs.jpca.9b11271, 2020.
Evoy, E., Kiland, K. J., Huang, Y., Schnitzler, E. G., Maclean, A. M.,
Kamal, S., Abbatt, J. P. D., and Bertram, A. K.: Diffusion Coefficients and
Mixing Times of Organic Molecules in β-Caryophyllene Secondary Organic Aerosol (SOA) and Biomass Burning Organic Aerosol (BBOA), ACS Earth Space Chem., 5, 3268–3278, https://doi.org/10.1021/acsearthspacechem.1c00317, 2021.
Faiola, C. L., Pullinen, I., Buchholz, A., Khalaj, F., Ylisirniö, A.,
Kari, E., Miettinen, P., Holopainen, J. K., Kivimäenpää, M.,
Schobesberger, S., Yli-Juuti, T., and Virtanen, A.: Secondary Organic Aerosol
Formation from Healthy and Aphid-Stressed Scots Pine Emissions, ACS Earth
Space Chem., 3, 1756–1772, https://doi.org/10.1021/acsearthspacechem.9b00118, 2019.
Fard, M. M., Krieger, U. K., and Peter, T.: Kinetic Limitation to Inorganic
Ion Diffusivity and to Coalescence of Inorganic Inclusions in Viscous
Liquid-Liquid Phase-Separated Particles, J. Phys. Chem. A, 121, 9284–9296, https://doi.org/10.1021/acs.jpca.7b05242, 2017.
Fitzgerald, C., Hosny, N. A., Tong, H., Seville, P. C., Gallimore, P. J.,
Davidson, N. M., Athanasiadis, A., Botchway, S. W., Ward, A. D., Kalberer,
M., Kuimova, M. K., and Pope, F. D.: Fluorescence lifetime imaging of
optically levitated aerosol: A technique to quantitatively map the viscosity
of suspended aerosol particles, Phys. Chem. Chem. Phys., 18, 21710–21719, https://doi.org/10.1039/c6cp03674k, 2016.
Fowler, K., Connolly, P., and Topping, D.: Modelling the effect of condensed-phase diffusion on the homogeneous nucleation of ice in ultra-viscous particles, Atmos. Chem. Phys., 20, 683–698, https://doi.org/10.5194/acp-20-683-2020, 2020.
Friedman, C. L., Pierce, J. R., and Selin, N. E.: Assessing the influence of
secondary organic versus primary carbonaceous aerosols on long-range
atmospheric polycyclic aromatic hydrocarbon transport, Environ. Sci.
Technol., 48, 3293–3302, https://doi.org/10.1021/es405219r, 2014.
Fulcher, G. S.: Analysis of Recent Measurements of the Viscosity of Glasses,
J. Am. Ceram. Soc., 8, 339–355, https://doi.org/10.1111/j.1151-2916.1992.tb05536.x,
1925.
Garcia-Valles, M., Hafez, H. S., Cruz-Matías, I., Vergés, E., Aly,
M. H., Nogués, J., Ayala, D., and Martínez, S.: Calculation of
viscosity-temperature curves for glass obtained from four wastewater
treatment plants in Egypt, J. Therm. Anal. Calorim., 111, 107–114,
https://doi.org/10.1007/s10973-012-2232-7, 2013.
Geron, C. D. and Arnts, R. R.: Seasonal monoterpene and sesquiterpene
emissions from Pinus taeda and Pinus virginiana, Atmos. Environ., 44,
4240–4251, https://doi.org/10.1016/j.atmosenv.2010.06.054, 2010.
Gervasi, N. R., Topping, D. O., and Zuend, A.: A predictive group-contribution model for the viscosity of aqueous organic aerosol, Atmos. Chem. Phys., 20, 2987–3008, https://doi.org/10.5194/acp-20-2987-2020, 2020.
Gordan, J. M. and Taylor, J. S.: Ideal Copolymers and the Second-Order
Transition of Synthetic Rubbers, Appl. Chem., 2, 493–500, 1952.
Gorkowski, K., Donahue, N. M., and Sullivan, R. C.: Aerosol Optical Tweezers
Constrain the Morphology Evolution of Liquid-Liquid Phase-Separated Atmospheric Particles, Chem, 6, 204–220, https://doi.org/10.1016/j.chempr.2019.10.018, 2020.
Gray Bé, A., Upshur, M. A., Liu, P., Martin, S. T., Geiger, F. M., and
Thomson, R. J.: Cloud Activation Potentials for Atmospheric α-Pinene
and β-Caryophyllene Ozonolysis Products, ACS Cent. Sci., 3, 715–725, https://doi.org/10.1021/acscentsci.7b00112, 2017.
Gržinić, G., Bartels-Rausch, T., Berkemeier, T., Türler, A., and Ammann, M.: Viscosity controls humidity dependence of N2O5 uptake to citric acid aerosol, Atmos. Chem. Phys., 15, 13615–13625, https://doi.org/10.5194/acp-15-13615-2015, 2015.
Hallquist, M., Wenger, J. C., Baltensperger, U., Rudich, Y., Simpson, D., Claeys, M., Dommen, J., Donahue, N. M., George, C., Goldstein, A. H., Hamilton, J. F., Herrmann, H., Hoffmann, T., Iinuma, Y., Jang, M., Jenkin, M. E., Jimenez, J. L., Kiendler-Scharr, A., Maenhaut, W., McFiggans, G., Mentel, Th. F., Monod, A., Prévôt, A. S. H., Seinfeld, J. H., Surratt, J. D., Szmigielski, R., and Wildt, J.: The formation, properties and impact of secondary organic aerosol: current and emerging issues, Atmos. Chem. Phys., 9, 5155–5236, https://doi.org/10.5194/acp-9-5155-2009, 2009.
Han, Y. M., Gong, Z. H., Ye, J. H., Liu, P. F., McKinney, K. A., and Martin,
S. T.: Quantifying the Role of the Relative Humidity-Dependent Physical
State of Organic Particulate Matter in the Uptake of Semivolatile Organic
Molecules, Environ. Sci. Technol., 53, 13209–13218, https://doi.org/10.1021/acs.est.9b05354, 2019.
Helmig, D., Ortega, J., Guenther, A., Herrick, J. D., and Geron, C.:
Sesquiterpene emissions from loblolly pine and their potential contribution
to biogenic aerosol formation in the Southeastern US, Atmos. Environ.,
40, 4150–4157, https://doi.org/10.1016/j.atmosenv.2006.02.035, 2006.
Hritz, A. D., Raymond, T. M., and Dutcher, D. D.: A method for the direct measurement of surface tension of collected atmospherically relevant aerosol particles using atomic force microscopy, Atmos. Chem. Phys., 16, 9761–9769, https://doi.org/10.5194/acp-16-9761-2016, 2016.
Ignatius, K., Kristensen, T. B., Järvinen, E., Nichman, L., Fuchs, C., Gordon, H., Herenz, P., Hoyle, C. R., Duplissy, J., Garimella, S., Dias, A., Frege, C., Höppel, N., Tröstl, J., Wagner, R., Yan, C., Amorim, A., Baltensperger, U., Curtius, J., Donahue, N. M., Gallagher, M. W., Kirkby, J., Kulmala, M., Möhler, O., Saathoff, H., Schnaiter, M., Tomé, A., Virtanen, A., Worsnop, D., and Stratmann, F.: Heterogeneous ice nucleation of viscous secondary organic aerosol produced from ozonolysis of α-pinene, Atmos. Chem. Phys., 16, 6495–6509, https://doi.org/10.5194/acp-16-6495-2016, 2016.
Ingram, S., Rovelli, G., Song, Y. C., Topping, D., Dutcher, C. S., Liu, S.
H., Nandy, L., Shiraiwa, M. and Reid, J. P.: Accurate Prediction of Organic
Aerosol Evaporation Using Kinetic Multilayer Modeling and the
Stokes-Einstein Equation, J. Phys. Chem. A, 125, 3444–3456,
https://doi.org/10.1021/acs.jpca.1c00986, 2021.
Jaoui, M., Kleindienst, T. E., Docherty, K. S., Lewandowski, M., and
Offenberg, J. H.: Secondary organic aerosol formation from the oxidation of
a series of sesquiterpenes: α-cedrene, β-caryophyllene,
α-humulene and α-farnesene with O3, OH and NO3 radicals,
Environ. Chem., 10, 178–193, https://doi.org/10.1071/EN13025, 2013.
Järvinen, E., Ignatius, K., Nichman, L., Kristensen, T. B., Fuchs, C., Hoyle, C. R., Höppel, N., Corbin, J. C., Craven, J., Duplissy, J., Ehrhart, S., El Haddad, I., Frege, C., Gordon, H., Jokinen, T., Kallinger, P., Kirkby, J., Kiselev, A., Naumann, K.-H., Petäjä, T., Pinterich, T., Prevot, A. S. H., Saathoff, H., Schiebel, T., Sengupta, K., Simon, M., Slowik, J. G., Tröstl, J., Virtanen, A., Vochezer, P., Vogt, S., Wagner, A. C., Wagner, R., Williamson, C., Winkler, P. M., Yan, C., Baltensperger, U., Donahue, N. M., Flagan, R. C., Gallagher, M., Hansel, A., Kulmala, M., Stratmann, F., Worsnop, D. R., Möhler, O., Leisner, T., and Schnaiter, M.: Observation of viscosity transition in α-pinene secondary organic aerosol, Atmos. Chem. Phys., 16, 4423–4438, https://doi.org/10.5194/acp-16-4423-2016, 2016.
Ji, Z. R., Zhang, Y., Pang, S. F., and Zhang, Y. H.: Crystal Nucleation and
Crystal Growth and Mass Transfer in Internally Mixed Sucrose/NaNO3 Particles, J. Phys. Chem. A, 121, 7968–7975, https://doi.org/10.1021/acs.jpca.7b08004, 2017.
Jimenez, J. L., Canagaratna, M. R., Donahue, N. M., Prevot, A. S. H., Zhang,
Q., Kroll, J. H., DeCarlo, P. F., Allan, J. D., Coe, H., Ng, N. L., Aiken,
A. C., Docherty, K. S., Ulbrich, I. M., Grieshop, A. P., Robinson, A. L.,
Duplissy, J., Smith, J. D., Wilson, K. R., Lanz, V. A., Hueglin, C., Sun, Y.
L., Tian, J., Laaksonen, A., Raatikainen, T., Rautiainen, J., Vaattovaara,
P., Ehn, M., Kulmala, M., Tomlinson, J. M., Collins, D. R., Cubison, M. J.,
Dunlea, E. J., Huffman, J. A., Onasch, T. B., Alfarra, M. R., Williams, P.
I., Bower, K., Kondo, Y., Schneider, J., Drewnick, F., Borrmann, S., Weimer,
S., Demerjian, K., Salcedo, D., Cottrell, L., Griffin, R., Takami, A.,
Miyoshi, T., Hatakeyama, S., Shimono, A., Sun, J. Y., Zhang, Y. M., Dzepina,
K., Kimmel, J. R., Sueper, D., Jayne, J. T., Herndon, S. C., Trimborn, A.
M., Williams, L. R., Wood, E. C., Middlebrook, A. M., Kolb, C. E.,
Baltensperger, U., and Worsnop, D. R.: Evolution of organic aerosols in the
atmosphere, Science, 326, 1525–1529, https://doi.org/10.1126/science.1180353, 2009.
Jing, D. and Bhushan, B.: Boundary Slip of Superoleophilic, Oleophobic, and
Superoleophobic Surfaces Immersed in Deionized Water, Hexadecane, and
Ethylene Glycol, Langmuir, 29, 14691–14700, https://doi.org/10.1021/la4030876, 2013.
Joseph, P. and Tabeling, P.: Direct measurement of the apparent slip length,
Phys. Rev. E, 71, 035303, https://doi.org/10.1103/PhysRevE.71.035303, 2005.
Keyte, I. J., Harrison, R. M., and Lammel, G.: Chemical reactivity and long-range transport potential of polycyclic aromatic hydrocarbons – a
review, Chem. Soc. Rev., 42, 9333–9391, https://doi.org/10.1039/c3cs60147a, 2013.
Kim, Y., Sartelet, K., and Couvidat, F.: Modeling the effect of non-ideality, dynamic mass transfer and viscosity on SOA formation in a 3-D air quality model, Atmos. Chem. Phys., 19, 1241–1261, https://doi.org/10.5194/acp-19-1241-2019,
2019.
Ladino, L. A., Zhou, S., Yakobi-Hancock, J. D., Aljawhary, D., and Abbatt, J.
P. D.: Factors controlling the ice nucleating abilities of α-pinene
SOA particles, J. Geophys. Res., 119, 9041–9051, https://doi.org/10.1002/2014JD021578, 2014.
Lata, N. N., Zhang, B., Schum, S., Mazzoleni, L., Brimberry, R., Marcus, M.
A., Cantrell, W. H., Fialho, P., Mazzoleni, C., and China, S.: Aerosol Composition, Mixing State, and Phase State of Free Tropospheric Particles
and Their Role in Ice Cloud Formation, ACS Earth Space Chem., 5,
3499–3510, https://doi.org/10.1021/acsearthspacechem.1c00315, 2021.
Lee, H. D. and Tivanski, A. V: Atomic Force Microscopy: An Emerging Tool in
Measuring the Phase State and Surface Tension of Individual Aerosol Particles, in: Annual Review of Physical Chemistry, edited by: Johnson, M. A. and Martinez, T. J., 72, 235–252, 2021.
Lee, H. D., Morris, H. S., Laskina, O., Sultana, C. M., Lee, C., Jayarathne,
T., Cox, J. L., Wang, X. F., Hasenecz, E. S., DeMott, P. J., Bertram, T. H.,
Cappa, C. D., Stone, E. A., Prather, K. A., Grassian, V. H., and Tivanski, A.
V: Organic Enrichment, Physical Phase State, and Surface Tension Depression
of Nascent Core-Shell Sea Spray Aerosols during Two Phytoplankton Blooms,
ACS Earth Space Chem., 4, 650–660, https://doi.org/10.1021/acsearthspacechem.0c00032,
2020.
Lelieveld, J., Evans, J. S., Fnais, M., Giannadaki, D., and Pozzer, A.: The
contribution of outdoor air pollution sources to premature mortality on a
global scale, Nature, 525, 367–371, https://doi.org/10.1038/nature15371, 2015.
Li, J. and Knopf, D. A.: Representation of Multiphase OH Oxidation of Amorphous Organic Aerosol for Tropospheric Conditions, Environ. Sci. Technol., 55, 7266–7275, https://doi.org/10.1021/acs.est.0c07668, 2021.
Li, L. Y. and Xie, S. D.: Historical variations of biogenic volatile organic
compound emission inventories in China, 1981–2003, Atmos. Environ., 95,
185–196, https://doi.org/10.1016/j.atmosenv.2014.06.033, 2014.
Li, W. J., Teng, X. M., Chen, X. Y., Liu, L., Xu, L., Zhang, J., Wang, Y.
Y., Zhang, Y., and Shi, Z. B.: Organic Coating Reduces Hygroscopic Growth of
Phase-Separated Aerosol Particles, Environ. Sci. Technol., 55,
16339–16346, https://doi.org/10.1021/acs.est.1c05901, 2021.
Logozzo, A. and Preston, T. C.: Temperature-Controlled Dual-Beam Optical
Trap for Single Particle Studies of Organic Aerosol, J. Phys. Chem. A,
126, 109–118, https://doi.org/10.1021/acs.jpca.1c09363, 2022.
Maclean, A. M., Li, Y., Crescenzo, G. V., Smith, N. R., Karydis, V. A.,
Tsimpidi, A. P., Butenhoff, C. L., Faiola, C. L., Lelieveld, J., Nizkorodov,
S. A., Shiraiwa, M., and Bertram, A. K.: Global Distribution of the Phase
State and Mixing Times within Secondary Organic Aerosol Particles in the
Troposphere Based on Room-Temperature Viscosity Measurements, ACS Earth Space
Chem., 5, 3458–3473, https://doi.org/10.1021/acsearthspacechem.1c00296, 2021a.
Maclean, A. M., Smith, N. R., Li, Y., Huang, Y., Hettiyadura, A. P. S.,
Crescenzo, G. V., Shiraiwa, M., Laskin, A., Nizkorodov, S. A., and Bertram,
A. K.: Humidity-Dependent Viscosity of Secondary Organic Aerosol from
Ozonolysis of β-Caryophyllene: Measurements, Predictions, and
Implications, ACS Earth Space Chem., 5, 305–318, https://doi.org/10.1021/acsearthspacechem.0c00296, 2021b.
Madawala, C. K., Lee, H. D., Kaluarachchi, C. P., and Tivanski, A. V: Probing
the Water Uptake and Phase State of Individual Sucrose Nanoparticles Using
Atomic Force Microscopy, ACS Earth Space Chem., 5, 2612–2620,
https://doi.org/10.1021/acsearthspacechem.1c00101, 2021.
Magill, J. H. and Plazek, D. J.: Physical Properties of Aromatic
Hydrocarbons. II. Solidification Behavior of 1,3,5-Tri-a-Naphthylbenzene,
J. Cryst. Growth, 46, 3757–3769, https://doi.org/10.1016/0022-0248(73)90127-9, 1967.
Marcolli, C., Luo, B., and Peter, T.: Mixing of the Organic Aerosol Fractions: Liquids as the Thermodynamically Stable Phases, J. Phys. Chem. A, 108, 2216–2224, https://doi.org/10.1021/jp036080l, 2004.
Marsh, A., Petters, S. S., Rothfuss, N. E., Rovelli, G., Song, Y. C., Reid,
J. P., and Petters, M. D.: Amorphous phase state diagrams and viscosity of
ternary aqueous organic/organic and inorganic/organic mixtures, Phys. Chem.
Chem. Phys., 20, 15086–15097, https://doi.org/10.1039/c8cp00760h, 2018.
Marshall, F. H., Miles, R. E. H., Song, Y. C., Ohm, P. B., Power, R. M.,
Reid, J. P., and Dutcher, C. S.: Diffusion and reactivity in ultraviscous
aerosol and the correlation with particle viscosity, Chem. Sci., 7, 1298–1308, https://doi.org/10.1039/c5sc03223g, 2016.
Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S. L., Péan, C.,
Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M. I., Huang, M.,
Leitzell, K., Lonnoy, E., Matthews, J. B. R., Maycock, T. K., Waterfield,
T., Yelekçi, O., Yu, R., and Zhou, B. (Eds.): IPCC: Climate Change
2021: The Physical Science Basis, Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 3–32, 2021.
Mcbride, S. P. and Law, B. M.: Viscosity-dependent liquid slip at molecularly smooth hydrophobic surfaces, Phys. Rev. E, 80, 060601, https://doi.org/10.1103/PhysRevE.80.060601, 2009.
McNeill, V. F.: Aqueous organic chemistry in the atmosphere: Sources and chemical processing of organic aerosols, Environ. Sci. Technol., 49,
1237–1244, https://doi.org/10.1021/es5043707, 2015.
Mentel, Th. F., Kleist, E., Andres, S., Dal Maso, M., Hohaus, T., Kiendler-Scharr, A., Rudich, Y., Springer, M., Tillmann, R., Uerlings, R., Wahner, A., and Wildt, J.: Secondary aerosol formation from stress-induced biogenic emissions and possible climate feedbacks, Atmos. Chem. Phys., 13, 8755–8770, https://doi.org/10.5194/acp-13-8755-2013, 2013.
Mu, Q., Shiraiwa, M., Octaviani, M., Ma, N., Ding, A., Su, H., Lammel, G.,
Pöschl, U., and Cheng, Y.: Temperature effect on phase state and
reactivity controls atmospheric multiphase chemistry and transport of PAHs,
Science Advances, 4, eaap7314, https://doi.org/10.1126/sciadv.aap7314, 2018.
Murray, B. J.: Inhibition of ice crystallisation in highly viscous aqueous organic acid droplets, Atmos. Chem. Phys., 8, 5423–5433, https://doi.org/10.5194/acp-8-5423-2008, 2008.
Murray, B. J., Wilson, T. W., Dobbie, S., Cui, Z., Al-Jumur, S. M. R. K.,
Möhler, O., Schnaiter, M., Wagner, R., Benz, S., Niemand, M., Saathoff,
H., Ebert, V., Wagner, S., and Kärcher, B.: Heterogeneous nucleation of
ice particles on glassy aerosols under cirrus conditions, Nat. Geosci., 3, 233–237, https://doi.org/10.1038/ngeo817, 2010.
Myhre, G., Myhre, C. E. L., Samset, B. H., and Storelvmo, T.: Aerosols and their Relation to Global Climate and Climate Sensitivity, Nature Education Knowledge, https://www.nature.com/scitable/knowledge/library/aerosols-and-their-relation-to-global-climate-102215345/ (last access: 20 September 2022), 2013.
Nel, A.: Air Pollution-Related Illness: Effects of Particles, Science,
308, 804–806, https://doi.org/10.1126/science.1108752, 2005.
Pascual, M. J., Pascual, L., and Durán, A.: Determination of
the Viscosity-Temperature Curve for Glasses on the Basis of Fixed Viscosity
Points Determined by Hot Stage Microscopy, Phys. Chem. Glasess, 42, 61–66,
2001.
Pascual, M. J., Durán, A., and Prado, M. O.: A new method for determining
fixed viscosity points of glasses, Phys. Chem. Glasess, 46, 512–520, 2005.
Petters, M. and Kasparoglu, S.: Predicting the influence of particle size on
the glass transition temperature and viscosity of secondary organic
material, Scientific Reports, 10, 15170, https://doi.org/10.1038/s41598-020-71490-0, 2020.
Petters, S. S., Kreidenweis, S. M., Grieshop, A. P., Ziemann, P. J., and
Petters, M. D.: Temperature- and Humidity-Dependent Phase States of
Secondary Organic Aerosols, Geophys. Res. Lett., 46, 1005–1013,
https://doi.org/10.1029/2018GL080563, 2019.
Plazek, D. J. and Magill, J. H.: Physical Properties of Aromatic
Hydrocarbons. I. Viscous and Viscoelastic Behavior of 1:3:5-Tri-α-Naphthyl Benzene, J. Cryst. Growth, 45, 3038–3050, https://doi.org/10.1063/1.1728059, 1966.
Plazek, D. J., Magill, J. H., Echeverria, I. and Chay, I.: Viscoelastic
behavior of 1,3,5 tri α-napthyl benzene (will the real TαNB
please stand up), J. Chem. Phys., 10445(December 1998), 1999.
Pope, C. A. and Dockery, D. W.: Health effects of fine particulate air
pollution: Lines that connect, J. Air Waste Manage., 56, 709–742,
https://doi.org/10.1080/10473289.2006.10464485, 2006.
Porter, W. C., Jimenez, J. L., and Barsanti, K. C.: Quantifying Atmospheric
Parameter Ranges for Ambient Secondary Organic Aerosol Formation, ACS Earth
Space Chem., 5, 2380–2397, https://doi.org/10.1021/acsearthspacechem.1c00090, 2021.
Pratap, V., Chen, Y., Yao, G. M., and Nakao, S.: Temperature effects on
multiphase reactions of organic molecular markers: A modeling study, Atmos.
Environ., 179, 40–48, https://doi.org/10.1016/j.atmosenv.2018.02.009, 2018.
Price, H. C., Mattsson, J., and Murray, B. J.: Sucrose diffusion in aqueous
solution, Phys. Chem. Chem. Phys., 18, 19207–19216, https://doi.org/10.1039/C6CP03238A, 2016.
Qin, Y., Ye, J., Ohno, P., Nah, T., and Martin, S. T.: Temperature-dependent
viscosity of organic materials characterized by atomic force microscope,
Atmosphere, 12, 1476, https://doi.org/10.3390/atmos12111476, 2021.
Reid, J. P., Bertram, A. K., Topping, D. O., Laskin, A., Martin, S. T.,
Petters, M. D., Pope, F. D., and Rovelli, G.: The viscosity of
atmospherically relevant organic particles, Nat. Commun., 9, 956,
https://doi.org/10.1038/s41467-018-03027-z, 2018.
Riva, M., Chen, Y., Zhang, Y., Lei, Z., Olson, N. E., Boyer, H. C., Narayan,
S., Yee, L. D., Green, H. S., Cui, T., Zhang, Z., Baumann, K., Fort, M.,
Edgerton, E., Budisulistiorini, S. H., Rose, C. A., Ribeiro, I. O.,
Oliveira, R. L. E., Dos Santos, E. O., Machado, C. M. D., Szopa, S., Zhao,
Y., Alves, E. G., De Sá, S. S., Hu, W., Knipping, E. M., Shaw, S. L.,
Duvoisin Junior, S., De Souza, R. A. F., Palm, B. B., Jimenez, J. L.,
Glasius, M., Goldstein, A. H., Pye, H. O. T., Gold, A., Turpin, B. J.,
Vizuete, W., Martin, S. T., Thornton, J. A., Dutcher, C. S., Ault, A. P., and
Surratt, J. D.: Increasing Isoprene Epoxydiol-to-Inorganic Sulfate Aerosol
Ratio Results in Extensive Conversion of Inorganic Sulfate to Organosulfur
Forms: Implications for Aerosol Physicochemical Properties, Environ. Sci.
Technol., 53, 8682–8694, https://doi.org/10.1021/acs.est.9b01019, 2019.
Rothfuss, N. E. and Petters, M. D.: Characterization of the temperature and
humidity-dependent phase diagram of amorphous nanoscale organic aerosols,
Phys. Chem. Chem. Phys., 19, 6532–6545, https://doi.org/10.1039/C6CP08593H, 2017.
Schmedding, R., Rasool, Q. Z., Zhang, Y., Pye, H. O. T., Zhang, H., Chen, Y., Surratt, J. D., Lopez-Hilfiker, F. D., Thornton, J. A., Goldstein, A. H., and Vizuete, W.: Predicting secondary organic aerosol phase state and viscosity and its effect on multiphase chemistry in a regional-scale air quality model, Atmos. Chem. Phys., 20, 8201–8225, https://doi.org/10.5194/acp-20-8201-2020, 2020.
Scholze, H.: The influence of viscosity and surface tension on the hot-stage
microscope measurements of glasses, Reports Ger. Ceram. Soc., 30, 63–68, 1962.
Schum, S. K., Zhang, B., Džepina, K., Fialho, P., Mazzoleni, C., and Mazzoleni, L. R.: Molecular and physical characteristics of aerosol at a remote free troposphere site: implications for atmospheric aging, Atmos. Chem. Phys., 18, 14017–14036, https://doi.org/10.5194/acp-18-14017-2018, 2018.
Shiraiwa, M. and Seinfeld, J. H.: Equilibration timescale of atmospheric
secondary organic aerosol partitioning, Geophys. Res. Lett., 39, L24801,
https://doi.org/10.1029/2012GL054008, 2012.
Shiraiwa, M., Ammann, M., Koop, T., and Pöschl, U.: Gas uptake and chemical
aging of semisolid organic aerosol particles, P. Natl. Acad. Sci. USA,
108, 11003–11008, https://doi.org/10.1073/pnas.1103045108, 2011.
Shiraiwa, M., Yee, L. D., Schilling, K. A., Loza, C. L., Craven, J. S.,
Zuend, A., Ziemann, P. J., and Seinfeld, J. H.: Size distribution dynamics
reveal particle-phase chemistry in organic aerosol formation, P. Natl. Acad. Sci. USA, 110, 11746–11750, https://doi.org/10.1073/pnas.1307501110, 2013.
Shiraiwa, M., Ueda, K., Pozzer, A., Lammel, G., Kampf, C. J., Fushimi, A.,
Enami, S., Arangio, A. M., Fröhlich-Nowoisky, J., Fujitani, Y., Furuyama, A., Lakey, P. S. J., Lelieveld, J., Lucas, K., Morino, Y., Pöschl, U., Takahama, S., Takami, A., Tong, H., Weber, B., Yoshino, A., and Sato, K.: Aerosol Health Effects from Molecular to Global Scales, Environ. Sci. Technol., 51, 13545–13567, https://doi.org/10.1021/acs.est.7b04417, 2017a.
Shiraiwa, M., Li, Y., Tsimpidi, A. P., Karydis, V. A., Berkemeier, T.,
Pandis, S. N., Lelieveld, J., Koop, T., and Pöschl, U.: Global
distribution of particle phase state in atmospheric secondary organic
aerosols, Nat. Commun., 8, 15002, https://doi.org/10.1038/ncomms15002, 2017b.
Shrivastava, M., Lou, S., Zelenyuk, A., Easter, R. C., Corley, R. A.,
Thrall, B. D., Rasch, P. J., Fast, J. D., Massey Simonich, S. L., Shen, H.,
and Tao, S.: Global long-range transport and lung cancer risk from polycyclic aromatic hydrocarbons shielded by coatings of organic aerosol, P. Natl. Acad. Sci. USA, 114, 1246–1251, https://doi.org/10.1073/pnas.1618475114, 2017.
Slade, J. H., Ault, A. P., Bui, A. T., Ditto, J. C., Lei, Z., Bondy, A. L.,
Olson, N. E., Cook, R. D., Desrochers, S. J., Harvey, R. M., Erickson, M.
H., Wallace, H. W., Alvarez, S. L., Flynn, J. H., Boor, B. E., Petrucci, G.
A., Gentner, D. R., Griffin, R. J., and Shepson, P. B.: Bouncier Particles at
Night: Biogenic Secondary Organic Aerosol Chemistry and Sulfate Drive Diel
Variations in the Aerosol Phase in a Mixed Forest, Environ. Sci. Technol.,
53, 4977–4987, https://doi.org/10.1021/acs.est.8b07319, 2019.
Smith, N. R., Crescenzo, G. V., Huang, Y., Hettiyadura, A. P. S., Siemens,
K., Li, Y., Faiola, C. L., Laskin, A., Shiraiwa, M., Bertram, A. K., and
Nizkorodov, S. A.: Viscosity and liquid–liquid phase separation in healthy
and stressed plant SOA, Environ. Sci.: Atmos., 1, 140–153,
https://doi.org/10.1039/d0ea00020e, 2021.
Song, M., Maclean, A. M., Huang, Y., Smith, N. R., Blair, S. L., Laskin, J., Laskin, A., DeRieux, W.-S. W., Li, Y., Shiraiwa, M., Nizkorodov, S. A., and Bertram, A. K.: Liquid–liquid phase separation and viscosity within secondary organic aerosol generated from diesel fuel vapors, Atmos. Chem. Phys., 19, 12515–12529, https://doi.org/10.5194/acp-19-12515-2019, 2019.
Steimer, S. S., Lampimäki, M., Coz, E., Grzinic, G., and Ammann, M.: The influence of physical state on shikimic acid ozonolysis: a case for in situ microspectroscopy, Atmos. Chem. Phys., 14, 10761–10772, https://doi.org/10.5194/acp-14-10761-2014, 2014.
Stickel, F., Fischer, E. W., and Richert, R.: Dynamics of glass-forming
liquids. II. Detailed comparison of dielectric relaxation, de-conductivity,
and viscosity data, J. Chem. Phys., 104, 2043–2055, https://doi.org/10.1063/1.470961, 1996.
Tikkanen, O.-P., Buchholz, A., Ylisirniö, A., Schobesberger, S., Virtanen, A., and Yli-Juuti, T.: Comparing secondary organic aerosol (SOA) volatility distributions derived from isothermal SOA particle evaporation data and FIGAERO–CIMS measurements, Atmos. Chem. Phys., 20, 10441–10458, https://doi.org/10.5194/acp-20-10441-2020, 2020.
Tretheway, D. C. and Meinhart, C. D.: Apparent fluid slip at hydrophobic
microchannel walls, Phys. Fluids, 14, L9, https://doi.org/10.1063/1.1432696, 2002.
Tumminello, P. R., James, R. C., Kruse, S., Kawasaki, A., Cooper, A.,
Guadalupe-Diaz, I., Zepeda, K. L., Crocker, D. R., Mayer, K. J., Sauer, J.
S., Lee, C., Prather, K. A., and Slade, J. H.: Evolution of Sea Spray Aerosol
Particle Phase State Across a Phytoplankton Bloom, ACS Earth Space Chem., 5, 2995–3007, https://doi.org/10.1021/acsearthspacechem.1c00186, 2021.
Vinogradova, O. I., Koynov, K., Best, A., and Feuillebois, F.: Direct
Measurements of Hydrophobic Slippage Using Double-Focus Fluorescence
Cross-Correlation, Phys. Rev. Lett., 102, 118302, https://doi.org/10.1103/PhysRevLett.102.118302, 2009.
Vander Wall, A. C., Wingen, L. M., Perraud, V., Zhao, Y., and
Finlayson-Pitts, B. J.: Enhanced gas uptake during α-pinene ozonolysis points to a burying mechanism, ACS Earth Space Chem., 4, 1435–1447, https://doi.org/10.1021/acsearthspacechem.0c00163, 2020.
Wolf, M. J., Coe, A., Dove, L. A., Zawadowicz, M. A., Dooley, K., Biller, S.
J., Zhang, Y., Chisholm, S. W., and Cziczo, D. J.: Investigating the
Heterogeneous Ice Nucleation of Sea Spray Aerosols Using Prochlorococcus as a Model Source of Marine Organic Matter, Environ. Sci. Technol., 53, 1139–1149, https://doi.org/10.1021/acs.est.8b05150, 2019.
Ye, J., Van Rooy, P., Adam, C. H., Jeong, C.-H., Urch, B., Cocker III, D. R., Evans, G. J., and Chan, A. W. H.: Predicting Secondary Organic Aerosol Enhancement in the Presence of Atmospherically Relevant Organic Particles,
ACS Earth Space Chem., 2, 1035–1046, https://doi.org/10.1021/acsearthspacechem.8b00093, 2018.
Yli-Juuti, T., Pajunoja, A., Tikkanen, O. P., Buchholz, A., Faiola, C.,
Väisänen, O., Hao, L., Kari, E., Peräkylä, O., Garmash, O.,
Shiraiwa, M., Ehn, M., Lehtinen, K., and Virtanen, A.: Factors controlling
the evaporation of secondary organic aerosol from α-pinene ozonolysis, Geophys. Res. Lett., 44, 2562–2570, https://doi.org/10.1002/2016GL072364, 2017.
Ylisirniö, A., Buchholz, A., Mohr, C., Li, Z., Barreira, L., Lambe, A., Faiola, C., Kari, E., Yli-Juuti, T., Nizkorodov, S. A., Worsnop, D. R., Virtanen, A., and Schobesberger, S.: Composition and volatility of secondary organic aerosol (SOA) formed from oxidation of real tree emissions compared to simplified volatile organic compound (VOC) systems , Atmos. Chem. Phys., 20, 5629–5644, https://doi.org/10.5194/acp-20-5629-2020, 2020.
Zaveri, R. A., Easter, R. C., Shilling, J. E., and Seinfeld, J. H.: Modeling kinetic partitioning of secondary organic aerosol and size distribution dynamics: representing effects of volatility, phase state, and particle-phase reaction, Atmos. Chem. Phys., 14, 5153–5181, https://doi.org/10.5194/acp-14-5153-2014, 2014.
Zaveri, R. A., Shilling, J. E., Zelenyuk, A., Liu, J., Bell, D. M., D'Ambro,
E. L., Gaston, C. J., Thornton, J. A., Laskin, A., Lin, P., Wilson, J.,
Easter, R. C., Wang, J., Bertram, A. K., Martin, S. T., Seinfeld, J. H., and
Worsnop, D. R.: Growth Kinetics and Size Distribution Dynamics of Viscous
Secondary Organic Aerosol, Environ. Sci. Technol., 52, 1191–1199,
https://doi.org/10.1021/acs.est.7b04623, 2018.
Zaveri, R. A., Wang, J., Fan, J. W., Zhang, Y. W., Shilling, J. E., Zelenyuk, A., Mei, F., Newsom, R., Pekour, M., Tomlinson, J., Comstock, J. M., Shrivastava, M., Fortner, E., Machado, L. A. T., Artaxo, P., and Martin, S. T.: Rapid growth of anthropogenic organic nanoparticles greatly alters cloud life cycle in the Amazon rainforest, Sci. Adv., 8, eabj0329, https://doi.org/10.1126/sciadv.abj0329, 2022.
Zelenyuk, A., Imre, D., Beránek, J., Abramson, E., Wilson, J., and
Shrivastava, M.: Synergy between Secondary Organic Aerosols and Long-Range
Transport of Polycyclic Aromatic Hydrocarbons, Environ. Sci. Technol., 46, 12459–12466, https://doi.org/10.1021/es302743z, 2012.
Zhang, Y., Chen, Y., Lei, Z., Olson, N. E., Riva, M., Koss, A. R., Zhang,
Z., Gold, A., Jayne, J. T., Worsnop, D. R., Onasch, T. B., Kroll, J. H.,
Turpin, B. J., Ault, A. P., and Surratt, J. D.: Joint Impacts of Acidity and
Viscosity on the Formation of Secondary Organic Aerosol from Isoprene
Epoxydiols (IEPOX) in Phase Separated Particles, ACS Earth Sp. Chem., 3,
2646–2658, https://doi.org/10.1021/acsearthspacechem.9b00209, 2019a.
Zhang, Y., Nichman, L., Spencer, P., Jung, J. I., Lee, A., Heffernan, B. K.,
Gold, A., Zhang, Z., Chen, Y., Canagaratna, M. R., Jayne, J. T., Worsnop, D.
R., Onasch, T. B., Surratt, J. D., Chandler, D., Davidovits, P., and Kolb, C.
E.: The Cooling Rate- And Volatility-Dependent Glass-Forming Properties of
Organic Aerosols Measured by Broadband Dielectric Spectroscopy, Environ. Sci. Technol., 53, 12366–12378, https://doi.org/10.1021/acs.est.9b03317, 2019b.
Zhu, L., Attard, P., and Neto, C.: Reconciling Slip Measurements in Symmetric
and Asymmetric Systems, Langmuir, 28, 7768–7774, https://doi.org/10.1021/la301040d,
2012.
Short summary
Information on the viscosity of secondary organic aerosols is needed when making air quality, climate, and atmospheric chemistry predictions. Viscosity depends on temperature, so we developed a new method for measuring the temperature-dependent viscosity of small samples. As an application of the method, we measured the viscosity of farnesene secondary organic aerosol at different temperatures.
Information on the viscosity of secondary organic aerosols is needed when making air quality,...