Articles | Volume 16, issue 7
https://doi.org/10.5194/amt-16-2001-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/amt-16-2001-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Further validation of the estimates of the downwelling solar radiation at ground level in cloud-free conditions provided by the McClear service: the case of Sub-Saharan Africa and the Maldives Archipelago
William Wandji Nyamsi
CORRESPONDING AUTHOR
Finnish Meteorological Institute, Atmospheric Research Centre of Eastern Finland, 70211 Kuopio, Finland
Finnish Meteorological Institute, Meteorological Research, 00560 Helsinki, Finland
Department of Physics, Faculty of Science, University of Yaoundé I, P.O. Box 812 Yaoundé, Cameroon
Yves-Marie Saint-Drenan
MINES PSL, Centre O.I.E., 06904 Sophia Antipolis, France
Antti Arola
Finnish Meteorological Institute, Atmospheric Research Centre of Eastern Finland, 70211 Kuopio, Finland
Lucien Wald
MINES PSL, Centre O.I.E., 06904 Sophia Antipolis, France
Related authors
Antti Arola, William Wandji Nyamsi, Antti Lipponen, Stelios Kazadzis, Nickolay A. Krotkov, and Johanna Tamminen
Atmos. Meas. Tech., 14, 4947–4957, https://doi.org/10.5194/amt-14-4947-2021, https://doi.org/10.5194/amt-14-4947-2021, 2021
Short summary
Short summary
Methods to estimate surface UV radiation from satellite measurements offer the only means to obtain global coverage, and the development of satellite-based UV algorithms has been ongoing since the early 1990s. One of the main challenges in this development has been how to account for the overall effect of absorption by atmospheric aerosols. One such method was suggested roughly a decade ago, and in this study we propose further improvements for this kind of approach.
Antti Kukkurainen, Antti Mikkonen, Antti Arola, Antti Lipponen, Ville Kolehmainen, and Neus Sabater
EGUsphere, https://doi.org/10.5194/egusphere-2025-220, https://doi.org/10.5194/egusphere-2025-220, 2025
Short summary
Short summary
HAPI2LIBIS is a new software tool that enhances the capabilities of the radiative transfer model libRadtran. It simplifies high wavelength resolution simulations by using up-to-date molecular data from the HITRAN database and streamlining computations. This tool helps researchers analyze how gases interact with radiation in the Earth's atmosphere and surface, improving atmospheric studies and satellite observations, and making detailed modeling more accurate and accessible.
Timo H. Virtanen, Anu-Maija Sundström, Elli Suhonen, Antti Lipponen, Antti Arola, Christopher O'Dell, Robert R. Nelson, and Hannakaisa Lindqvist
Atmos. Meas. Tech., 18, 929–952, https://doi.org/10.5194/amt-18-929-2025, https://doi.org/10.5194/amt-18-929-2025, 2025
Short summary
Short summary
We find that small particles suspended in the air (aerosols) affect the satellite observations of carbon dioxide (CO2) made by the Orbiting Carbon Observatory-2 satellite instrument. Satellite estimates of CO2 appear to be too high for clean areas and too low for polluted areas. Our results show that CO2 and aerosols are often co-emitted, and this is partly masked out in the current retrievals. Correctly accounting for the aerosol effect is important for CO2 emission estimates by satellites.
Harri Kokkola, Juha Tonttila, Silvia M. Calderón, Sami Romakkaniemi, Antti Lipponen, Aapo Peräkorpi, Tero Mielonen, Edward Gryspeerdt, Timo Henrik Virtanen, Pekka Kolmonen, and Antti Arola
Atmos. Chem. Phys., 25, 1533–1543, https://doi.org/10.5194/acp-25-1533-2025, https://doi.org/10.5194/acp-25-1533-2025, 2025
Short summary
Short summary
Understanding how atmospheric aerosols affect clouds is a scientific challenge. One question is how aerosols affects the amount of cloud water. We used a cloud-scale model to study these effects on marine clouds. The study showed that variations in cloud properties and instrument noise can cause bias in satellite-derived cloud water content. However, our results suggest that for similar weather conditions with well-defined aerosol concentrations, satellite data can reliably track these effects.
Markku Kulmala, Anna Lintunen, Hanna Lappalainen, Annele Virtanen, Chao Yan, Ekaterina Ezhova, Tuomo Nieminen, Ilona Riipinen, Risto Makkonen, Johanna Tamminen, Anu-Maija Sundström, Antti Arola, Armin Hansel, Kari Lehtinen, Timo Vesala, Tuukka Petäjä, Jaana Bäck, Tom Kokkonen, and Veli-Matti Kerminen
Atmos. Chem. Phys., 23, 14949–14971, https://doi.org/10.5194/acp-23-14949-2023, https://doi.org/10.5194/acp-23-14949-2023, 2023
Short summary
Short summary
To be able to meet global grand challenges, we need comprehensive open data with proper metadata. In this opinion paper, we describe the SMEAR (Station for Measuring Earth surface – Atmosphere Relations) concept and include several examples (cases), such as new particle formation and growth, feedback loops and the effect of COVID-19, and what has been learned from these investigations. The future needs and the potential of comprehensive observations of the environment are summarized.
Chao Yan, Yicheng Shen, Dominik Stolzenburg, Lubna Dada, Ximeng Qi, Simo Hakala, Anu-Maija Sundström, Yishuo Guo, Antti Lipponen, Tom V. Kokkonen, Jenni Kontkanen, Runlong Cai, Jing Cai, Tommy Chan, Liangduo Chen, Biwu Chu, Chenjuan Deng, Wei Du, Xiaolong Fan, Xu-Cheng He, Juha Kangasluoma, Joni Kujansuu, Mona Kurppa, Chang Li, Yiran Li, Zhuohui Lin, Yiliang Liu, Yuliang Liu, Yiqun Lu, Wei Nie, Jouni Pulliainen, Xiaohui Qiao, Yonghong Wang, Yifan Wen, Ye Wu, Gan Yang, Lei Yao, Rujing Yin, Gen Zhang, Shaojun Zhang, Feixue Zheng, Ying Zhou, Antti Arola, Johanna Tamminen, Pauli Paasonen, Yele Sun, Lin Wang, Neil M. Donahue, Yongchun Liu, Federico Bianchi, Kaspar R. Daellenbach, Douglas R. Worsnop, Veli-Matti Kerminen, Tuukka Petäjä, Aijun Ding, Jingkun Jiang, and Markku Kulmala
Atmos. Chem. Phys., 22, 12207–12220, https://doi.org/10.5194/acp-22-12207-2022, https://doi.org/10.5194/acp-22-12207-2022, 2022
Short summary
Short summary
Atmospheric new particle formation (NPF) is a dominant source of atmospheric ultrafine particles. In urban environments, traffic emissions are a major source of primary pollutants, but their contribution to NPF remains under debate. During the COVID-19 lockdown, traffic emissions were significantly reduced, providing a unique chance to examine their relevance to NPF. Based on our comprehensive measurements, we demonstrate that traffic emissions alone are not able to explain the NPF in Beijing.
Benoît Tournadre, Benoît Gschwind, Yves-Marie Saint-Drenan, Xuemei Chen, Rodrigo Amaro E Silva, and Philippe Blanc
Atmos. Meas. Tech., 15, 3683–3704, https://doi.org/10.5194/amt-15-3683-2022, https://doi.org/10.5194/amt-15-3683-2022, 2022
Short summary
Short summary
Solar radiation received by the Earth's surface is valuable information for various fields like the photovoltaic industry or climate research. Pictures taken from satellites can be used to estimate the solar radiation from cloud reflectivity. Two issues for a good estimation are different instrumentations and orbits. We modify a widely used method that is today only used on geostationary satellites, so it can be applied on instruments on different orbits and with different sensitivities.
Antti Lipponen, Jaakko Reinvall, Arttu Väisänen, Henri Taskinen, Timo Lähivaara, Larisa Sogacheva, Pekka Kolmonen, Kari Lehtinen, Antti Arola, and Ville Kolehmainen
Atmos. Meas. Tech., 15, 895–914, https://doi.org/10.5194/amt-15-895-2022, https://doi.org/10.5194/amt-15-895-2022, 2022
Short summary
Short summary
We have developed a machine-learning-based model that can be used to correct the Sentinel-3 satellite-based aerosol parameter data of the Synergy data product. The strength of the model is that the original satellite data processing does not have to be carried out again but the correction can be carried out with the data already available. We show that the correction significantly improves the accuracy of the satellite aerosol parameters.
Anu Kauppi, Antti Kukkurainen, Antti Lipponen, Marko Laine, Antti Arola, Hannakaisa Lindqvist, and Johanna Tamminen
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2021-328, https://doi.org/10.5194/amt-2021-328, 2021
Revised manuscript not accepted
Short summary
Short summary
We present a methodology in Bayesian framework for retrieving atmospheric aerosol optical depth and aerosol type from the pre-computed look-up tables (LUTs). Especially, we consider Bayesian model averaging and uncertainty originating from aerosol model selection and imperfect forward modelling. Our aim is to get more realistic uncertainty estimates. We have applied the methodology to TROPOMI/S5P satellite observations and evaluated the results against ground-based data from the AERONET.
Xiaoxia Shang, Tero Mielonen, Antti Lipponen, Elina Giannakaki, Ari Leskinen, Virginie Buchard, Anton S. Darmenov, Antti Kukkurainen, Antti Arola, Ewan O'Connor, Anne Hirsikko, and Mika Komppula
Atmos. Meas. Tech., 14, 6159–6179, https://doi.org/10.5194/amt-14-6159-2021, https://doi.org/10.5194/amt-14-6159-2021, 2021
Short summary
Short summary
The long-range-transported smoke particles from a Canadian wildfire event were observed with a multi-wavelength Raman polarization lidar and a ceilometer over Kuopio, Finland, in June 2019. The optical properties and the mass concentration estimations were reported for such aged smoke aerosols over northern Europe.
Kevin Lamy, Thierry Portafaix, Colette Brogniez, Kaisa Lakkala, Mikko R. A. Pitkänen, Antti Arola, Jean-Baptiste Forestier, Vincent Amelie, Mohamed Abdoulwahab Toihir, and Solofoarisoa Rakotoniaina
Earth Syst. Sci. Data, 13, 4275–4301, https://doi.org/10.5194/essd-13-4275-2021, https://doi.org/10.5194/essd-13-4275-2021, 2021
Short summary
Short summary
This paper is about the presentation of the UV-Indien measurement network. This network measures the ultraviolet radiation emitted by the Sun received at the Earth's surface and the clouding above each station. It has been deployed at several sites in the Indian Ocean region representing different environmental conditions. A description of the instruments and their calibration, maintenance, and data processing is presented in this paper along with a valuation of the data quality.
Antti Arola, William Wandji Nyamsi, Antti Lipponen, Stelios Kazadzis, Nickolay A. Krotkov, and Johanna Tamminen
Atmos. Meas. Tech., 14, 4947–4957, https://doi.org/10.5194/amt-14-4947-2021, https://doi.org/10.5194/amt-14-4947-2021, 2021
Short summary
Short summary
Methods to estimate surface UV radiation from satellite measurements offer the only means to obtain global coverage, and the development of satellite-based UV algorithms has been ongoing since the early 1990s. One of the main challenges in this development has been how to account for the overall effect of absorption by atmospheric aerosols. One such method was suggested roughly a decade ago, and in this study we propose further improvements for this kind of approach.
Antti Lipponen, Ville Kolehmainen, Pekka Kolmonen, Antti Kukkurainen, Tero Mielonen, Neus Sabater, Larisa Sogacheva, Timo H. Virtanen, and Antti Arola
Atmos. Meas. Tech., 14, 2981–2992, https://doi.org/10.5194/amt-14-2981-2021, https://doi.org/10.5194/amt-14-2981-2021, 2021
Short summary
Short summary
We have developed a new computational method to post-process-correct the satellite aerosol retrievals. The proposed method combines the conventional satellite aerosol retrievals relying on physics-based models and machine learning. The results show significantly improved accuracy in the aerosol data over the operational satellite data products. The correction can be applied to the existing satellite aerosol datasets with no need to fully reprocess the much larger original radiance data.
Nicola Zoppetti, Simone Ceccherini, Bruno Carli, Samuele Del Bianco, Marco Gai, Cecilia Tirelli, Flavio Barbara, Rossana Dragani, Antti Arola, Jukka Kujanpää, Jacob C. A. van Peet, Ronald van der A, and Ugo Cortesi
Atmos. Meas. Tech., 14, 2041–2053, https://doi.org/10.5194/amt-14-2041-2021, https://doi.org/10.5194/amt-14-2041-2021, 2021
Short summary
Short summary
The new platforms for Earth observation from space will provide an enormous amount of data that can be hard to exploit as a whole. The Complete Data Fusion algorithm can reduce the data volume while retaining the information of the full dataset. In this work, we applied the Complete Data Fusion algorithm to simulated ozone profiles, and the results show that the fused products are characterized by higher information content compared to individual L2 products.
Antti Ruuskanen, Sami Romakkaniemi, Harri Kokkola, Antti Arola, Santtu Mikkonen, Harri Portin, Annele Virtanen, Kari E. J. Lehtinen, Mika Komppula, and Ari Leskinen
Atmos. Chem. Phys., 21, 1683–1695, https://doi.org/10.5194/acp-21-1683-2021, https://doi.org/10.5194/acp-21-1683-2021, 2021
Short summary
Short summary
The study focuses mainly on cloud-scavenging efficiency of absorbing particulate matter (mainly black carbon) but additionally covers cloud-scavenging efficiency of scattering particles and statistics of cloud condensation nuclei. The main findings give insight into how black carbon is distributed in different particle sizes and the sensitivity to cloud scavenged. The main findings are useful for large-scale modelling for evaluating cloud scavenging.
Kaisa Lakkala, Jukka Kujanpää, Colette Brogniez, Nicolas Henriot, Antti Arola, Margit Aun, Frédérique Auriol, Alkiviadis F. Bais, Germar Bernhard, Veerle De Bock, Maxime Catalfamo, Christine Deroo, Henri Diémoz, Luca Egli, Jean-Baptiste Forestier, Ilias Fountoulakis, Katerina Garane, Rosa Delia Garcia, Julian Gröbner, Seppo Hassinen, Anu Heikkilä, Stuart Henderson, Gregor Hülsen, Bjørn Johnsen, Niilo Kalakoski, Angelos Karanikolas, Tomi Karppinen, Kevin Lamy, Sergio F. León-Luis, Anders V. Lindfors, Jean-Marc Metzger, Fanny Minvielle, Harel B. Muskatel, Thierry Portafaix, Alberto Redondas, Ricardo Sanchez, Anna Maria Siani, Tove Svendby, and Johanna Tamminen
Atmos. Meas. Tech., 13, 6999–7024, https://doi.org/10.5194/amt-13-6999-2020, https://doi.org/10.5194/amt-13-6999-2020, 2020
Short summary
Short summary
The TROPOspheric Monitoring Instrument (TROPOMI) onboard the Sentinel-5 Precursor (S5P) satellite was launched on 13 October 2017 to provide the atmospheric composition for atmosphere and climate research. Ground-based data from 25 sites located in Arctic, subarctic, temperate, equatorial and Antarctic
areas were used for the validation of the TROPOMI surface ultraviolet (UV) radiation product. For most sites 60 %–80 % of TROPOMI data was within ± 20 % of ground-based data.
Johannes Quaas, Antti Arola, Brian Cairns, Matthew Christensen, Hartwig Deneke, Annica M. L. Ekman, Graham Feingold, Ann Fridlind, Edward Gryspeerdt, Otto Hasekamp, Zhanqing Li, Antti Lipponen, Po-Lun Ma, Johannes Mülmenstädt, Athanasios Nenes, Joyce E. Penner, Daniel Rosenfeld, Roland Schrödner, Kenneth Sinclair, Odran Sourdeval, Philip Stier, Matthias Tesche, Bastiaan van Diedenhoven, and Manfred Wendisch
Atmos. Chem. Phys., 20, 15079–15099, https://doi.org/10.5194/acp-20-15079-2020, https://doi.org/10.5194/acp-20-15079-2020, 2020
Short summary
Short summary
Anthropogenic pollution particles – aerosols – serve as cloud condensation nuclei and thus increase cloud droplet concentration and the clouds' reflection of sunlight (a cooling effect on climate). This Twomey effect is poorly constrained by models and requires satellite data for better quantification. The review summarizes the challenges in properly doing so and outlines avenues for progress towards a better use of aerosol retrievals and better retrievals of droplet concentrations.
Cited articles
Alani, O. E., Ghennioui, A., Merrouni, A. A., Ghennioui, H., Saint-Drenan,
Y. M., and Blanc, P.: Validation of surface solar irradiances estimates and
forecast under clear-sky conditions from the CAMS McClear model in
Benguerir, Morocco, AIP Conference Proceedings, SolarPACES 2018, Casablanca,
Morocco, October 2018, Vol. 2126, no. 1, p. 190005,
https://doi.org/10.1063/1.5117702, 2019.
Alfred-Wegener-Institute: WRMC-BSRN, Alfred-Wegener-Institute [data set], https://bsrn.awi.de, last access: 23 August 2022.
Antonanzas-Torres, F., Urraca, R., Polo, J., Perpiñán-Lamigueiro,
O., and Escobar, R.: Clear sky solar irradiance models: A review of seventy
models, Renew. Sustain. Energy Rev., 107, 374–387,
https://doi.org/10.1016/j.rser.2019.02.032, 2019.
Badosa, J., Wood, J., Blanc, P., Long, C. N., Vuilleumier, L., Demengel, D., and Haeffelin, M.: Solar irradiances measured using SPN1 radiometers: uncertainties and clues for development, Atmos. Meas. Tech., 7, 4267–4283, https://doi.org/10.5194/amt-7-4267-2014, 2014.
Bengulescu, M., Blanc, P., Boilley, A., and Wald, L.: Do modelled or
satellite-based estimates of surface solar irradiance accurately describe
its temporal variability?, Adv. Sci. Res., 14, 35–48,
https://doi.org/10.5194/asr-14-35-2017, 2017.
Bengulescu, M., Blanc, P., and Wald, L.: On the intrinsic timescales of temporal variability in measurements of the surface solar radiation, Nonlin. Processes Geophys., 25, 19–37, https://doi.org/10.5194/npg-25-19-2018, 2018.
Blanc, P. and Wald, L.: The SG2 algorithm for a fast and accurate
computation of the position of the Sun, Sol. Energy, 86, 3072–3083,
https://doi.org/10.1016/j.solener.2012.07.018, 2012.
Blanc, P., Espinar, B., Geuder, N., Gueymard, C., Meyer, R., Pitz-Paal, R.,
Reinhardt, B., Renne, D., Sengupta, M., Wald, L., and Wilbert, S.: Direct
normal irradiance related definitions and applications: the circumsolar
issue, Sol. Energy, 110, 561–577,
https://doi.org/10.1016/j.solener.2014.10.001, 2014a.
Blanc, P., Gschwind, B., Lefèvre, M., and Wald, L.: Twelve monthly maps
of ground albedo parameters derived from MODIS data sets, Proceedings of
IEEE Geoscience and Remote Sensing Symposium, held 13–18 July 2014, Quebec,
Canada, 3270–3272, https://doi.org/10.1109/IGARSS.2014.6947177, 2014b.
Bojinski, S., Verstraete, M., Peterson, T. C., Richter, C., Simmons, A., and
Zemp, M.: The concept of essential climate variables in support of climate
research, applications, and policy, B. Am. Meteorol. Soc., 95, 1431–1443,
https://doi.org/10.1175/BAMS-D-13-00047.1, 2014.
Bright, J. M., Sun, X., Gueymard, C. A., Acord, B., Wang, P., and Engerer,
N. A.: Bright-Sun. A globally applicable 1-min irradiance clear-sky
detection model, Renew. Sustain. Energy Rev., 121, 09706,
https://doi.org/10.1016/j.rser.2020.109706, 2020.
Brooks, M. J., du Clou, S., van Niekerk, W. L., Gauché, P., Leonard, C.,
Mouzouris, M. J., Meyer, R., van der Westhuizen, N., van Dyk, E. E, and
Vorster, F. J.: SAURAN: A new resource for solar radiometric data in
Southern Africa, Journal of Energy in Southern Africa, 26, 2–10,
http://www.scielo.org.za/scielo.php?script=sci_arttext&pid=S1021-447X2015000100001&lng=en&tlng=en (last
access: 30 October 2021), 2015.
Calbó, J., González, J. A., and Pagès, D.: A method for
sky-condition classification from ground-based solar radiation measurements,
J. Appl. Meteorol., 40, 2193–2199,
https://doi.org/10.1175/1520-0450(2001)040<2193:AMFSCC>2.0.CO;2, 2001.
Ceamanos, X., Carrer, D., and Roujean, J.-L.: Improved retrieval of direct and diffuse downwelling surface shortwave flux in cloudless atmosphere using dynamic estimates of aerosol content and type: application to the LSA-SAF project, Atmos. Chem. Phys., 14, 8209–8232, https://doi.org/10.5194/acp-14-8209-2014, 2014.
Chen, X. M., Li, Y., and Wanga, R. Z.: Performance study of affine
transformation and the advanced clear-sky model to improve intra-day solar
forecasts, J. Renew. Sustain. Ener., 12, 043703,
https://doi.org/10.1063/5.0009155, 2020.
Cros, S., Liandrat, O., Sébastien, N., Schmutz, N., and Voyant, C.:
Clear sky models assessment for an operational PV production forecasting
solution, 28th European Photovoltaic Solar Energy Conference and Exhibition,
Sep 2013, France, 5BV.4.69, 2013, https://www.eupvsec-proceedings.com/proceedings?paper=26738, last
access: 14 July 2021.
Dantas de Paula, M., Gómez Giménez, M., Niamir, A., Thurner, M., and
Hickler, T.: Combining European earth observation products with dynamic
global vegetation models for estimating essential biodiversity variables,
Int. J. Digit. Earth, 13, 262–277,
https://doi.org/10.1080/17538947.2019.1597187, 2020.
Dev, S., Manandhar, S., Lee, Y. H., and Winkler, S.: Study of clear sky
models for Singapore, 38th Progress in Electromagnetics Research
Symposium (PIERS), 22–25 May 2017, https://ieeexplore.ieee.org/document/8293352/, last access: 15 July 2021.
ECMWF: CAMS McClear Service for irradiation under clear-sky, Atmosphere Monitoring Service [data set], http://www.soda-pro.com/web-services/radiation/cams-mcclear, last access: 30 July 2022.
Eissa, Y., Korany, M., Aoun, Y., Boraiy, M., Abdel Wahab, M., Alfaro, S.,
Blanc, P., El-Metwally, M., Ghedira, H., and Wald, L.: Validation of the
surface downwelling solar irradiance estimates of the HelioClim-3 database
in Egypt, Remote Sens-Basel, 7, 9269–9291,
https://doi.org/10.3390/rs70709269, 2015a.
Eissa, Y., Munawwar, S., Oumbe, A., Blanc, P., Ghedira, H., Wald, L., Bru,
H., and Goffe, D.: Validating surface downwelling solar irradiances
estimated by the McClear model under cloud-free skies in the United Arab
Emirates, Sol. Energy, 114, 17–31,
https://doi.org/10.1016/j.solener.2015.01.017, 2015b.
Eissa, Y., Blanc, P., Ghedira, H., Oumbe, A., and Wald, L.: A fast and
simple model to estimate the contribution of the circumsolar irradiance to
measured broadband beam irradiance under cloud-free conditions in desert
environment, Sol. Energy, 163, 497–509,
https://doi.org/10.1016/j.solener.2018.02.015, 2018.
Ellis, B. H, Deceglie, M., and Jain, A.: Automatic detection of clear-sky
periods from irradiance data, IEEE J. Photovoltaics, 9, 998–1005,
https://doi.org/10.1109/JPHOTOV.2019.2914444, 2019.
Emde, C., Buras-Schnell, R., Kylling, A., Mayer, B., Gasteiger, J., Hamann, U., Kylling, J., Richter, B., Pause, C., Dowling, T., and Bugliaro, L.: The libRadtran software package for radiative transfer calculations (version 2.0.1), Geosci. Model Dev., 9, 1647–1672, https://doi.org/10.5194/gmd-9-1647-2016, 2016.
energydata: 970 datasets, energydata [data set], https://energydata.info/dataset, last access: 8 August 2021.
Fountoulakis, I., Papachristopoulou, K., Proestakis, E., Amiridis, V., Kontoes,
C., and Kazadzis, S.: Effect of aerosol vertical distribution on the modeling
of solar radiation, Remote Sens.-Basel, 14, 1143,
https://doi.org/10.3390/rs14051143, 2022.
GEO (Group on Earth Observations): GEO Task US-09-01a: Critical Earth
Observations Priorities. Health Societal Benefit Area: Air Quality,
https://sbageotask.larc.nasa.gov/AirQuality_US0901a-FINAL.pdf (last access: 11 July 2022), 2010.
GEO (Group on Earth Observations): The GEOSS Water Strategy: From
Observations to Decisions, https://www.ceos.org/document_management/Ad_Hoc_Teams/WSIST/WSIST_GEOSS-Water-Strategy-Full-Report_Jan2014.pdf (last access:
12 July 2021), 2014.
Gschwind, B., Ménard, L., Albuisson, M., and Wald, L.: Converting a
successful research project into a sustainable service: the case of the SoDa
Web service, Environ. Modell. Softw., 21, 1555–1561,
https://doi.org/10.1016/j.envsoft.2006.05.002, 2006.
Gschwind, B., Wald, L., Blanc, P., Lefèvre, M., Schroedter-Homscheidt,
M., and Arola, A.: Improving the McClear model estimating the downwelling
solar radiation at ground level in cloud-free conditions – McClear-v3,
Meteorol. Z., 28, 147–163, https://doi.org/10.1127/metz/2019/0946, 2019.
Gueymard, C. A.: Spectral circumsolar radiation contribution to CPV, AIP
Conference Proceedings 1277, 6th International Conference on Concentrating
Photovoltaic Systems, Freiburg, Germany, 7–9 April 2010, 316,
https://doi.org/10.1063/1.3509220, 2010.
Gueymard, C. A.: Clear-sky irradiance predictions for solar resource mapping
and large-scale applications: Improved validation methodology and detailed
performance analysis of 18 broadband radiative models, Sol. Energy, 86,
2145–2169, https://doi.org/10.1016/j.solener.2011.11.011, 2012.
Gueymard, C. A. and Yang, D.: Worldwide validation of CAMS and MERRA-2
reanalysis aerosol optical depth products using 15 years of AERONET
observations, Atmos. Environ., 225, 117216,
https://doi.org/10.1016/j.atmosenv.2019.117216, 2020.
Ineichen, P.: Comparison of eight clear sky broadband models against 16
independent data banks, Sol. Energy, 80, 468–478,
https://doi.org/10.1016/j.solener.2005.04.018, 2006.
Ineichen, P.: Validation of models that estimate the clear sky global and
beam solar irradiance, Sol. Energy, 132, 332–344,
https://doi.org/10.1016/j.solener.2016.03.017, 2016.
Juzeniene, A., Brekke, P., Dahlback, A., Andersson-Engels, S., Reichrath,
J., Moan, K., Holick, M. F., Grant, W. B., and Moan, J.: Solar radiation and
human health, Rep. Prog. Phys., 74, 066701,
https://doi.org/10.1088/0034-4885/74/6/066701, 2011.
Kasten, F. and Young, A. T.: Revised optical air mass tables and
approximation formula, Appl. Opt., 28, 4735–4738,
https://doi.org/10.1364/AO.28.004735, 1989.
Kato, S., Ackerman, T., Mather, J., and Clothiaux, E.: The k–distribution
method and correlated–k approximation for shortwave radiative transfer
model, J. Quant. Spectrosc. Ra., 62, 109–121,
https://doi.org/10.1016/S0022-4073(98)00075-2, 1999.
Kopp, G. and Lean, J. L.: A new, lower value of total solar irradiance:
evidence and climate significance, Geophys. Res. Lett., 38, L01706,
https://doi.org/10.1029/2010GL045777, 2011.
Korany, M., Boraiy, M., Eissa, Y., Aoun, Y., Abdel Wahab, M. M., Alfaro, S. C., Blanc, P., El-Metwally, M., Ghedira, H., Hungershoefer, K., and Wald, L.: A database of multi-year (2004–2010) quality-assured surface solar hourly irradiation measurements for the Egyptian territory, Earth Syst. Sci. Data, 8, 105–113, https://doi.org/10.5194/essd-8-105-2016, 2016.
Lean, J. and Rind, D.: Climate forcing by changing solar radiation, J.
Climate, 11, 3069–3094, 1998.
Lefèvre, M.: Regular validation reports of the CAMS solar radiation
products. Issues #33 and 34, https://atmosphere.copernicus.eu/supplementary-services (last access:
30 August 2022), 2021.
Lefèvre, M. and Wald, L.: Validation of the McClear clear-sky model in desert conditions with three stations in Israel, Adv. Sci. Res., 13, 21–26, https://doi.org/10.5194/asr-13-21-2016, 2016.
Lefèvre, M., Blanc, P., Espinar, B., Gschwind, B., Ménard, L.,
Ranchin, T., Wald, L., Saboret, L., Thomas, C., and Wey, E.: The HelioClim-1
database of daily solar radiation at Earth surface: an example of the
benefits of GEOSS Data-CORE, IEEE J. Select. Top. Appl.
Earth Observ. Remote Sens., 7, 1745–1753,
https://doi.org/10.1109/JSTARS.2013.2283791, 2014.
Lefèvre, M., Oumbe, A., Blanc, P., Espinar, B., Gschwind, B., Qu, Z., Wald, L., Schroedter-Homscheidt, M., Hoyer-Klick, C., Arola, A., Benedetti, A., Kaiser, J. W., and Morcrette, J.-J.: McClear: a new model estimating downwelling solar radiation at ground level in clear-sky conditions, Atmos. Meas. Tech., 6, 2403–2418, https://doi.org/10.5194/amt-6-2403-2013, 2013.
Long, C. N. and Ackerman, T. P.: Identification of clear skies from
broadband pyranometer measurements and calculation of downwelling shortwave
cloud effects, J. Geophys. Res., 105, 15609,
https://doi.org/10.1029/2000JD900077, 2000.
Mabasa, B., Lysko, M. D., Tazvinga, H., Zwane, N., and Moloi, S. J.: The
performance assessment of six global horizontal irradiance clear sky models
in six climatological regions in South Africa, Energies, 14, 2583,
https://doi.org/10.3390/en14092583, 2021.
Mayer, B. and Kylling, A.: Technical note: The libRadtran software package for radiative transfer calculations - description and examples of use, Atmos. Chem. Phys., 5, 1855–1877, https://doi.org/10.5194/acp-5-1855-2005, 2005.
Möllenkamp, J., Beikircher, T., and Häberle, A.: Recalibration of
SPN1 pyranometers against pyrheliometer and its relevance for the evaluation
of concentrating solar process heat plants, Sol. Energy, 197, 344–358,
https://doi.org/10.1016/j.solener.2019.12.055, 2020.
Ohmura, A., Gilgen, H., Hegner, H., Mueller, G., Wild, M., Dutton, E. G.,
Forgan, B., Froelich, C., Philipona, R., Heimo, A., Koenig-Langlo, G.,
McArthur, B., Pinker, R., Whitlock, C. H., and Dehne, K.: Baseline Surface
Radiation Network (BSRN/WCRP): New precision radiometry for climate
research, B. Am. Meteorol. Soc., 79, 2115–2136,
https://doi.org/10.1175/1520-0477(1998)079<2115:BSRNBW>2.0.CO;2, 1998.
Oumbe, A., Wald, L., Blanc, P., and Schroedter-Homscheidt, M.: Exploitation of
radiative transfer model for assessing solar radiation: the relative
importance of atmospheric constituents, EUROSUN 2008, 1st International
Congress on Heating, Cooling and Buildings, Lisbon, Portugal, Oct 2008,
Paper 403, https://hal-mines-paristech.archives-ouvertes.fr/hal-00465779 (last access: 19 June 2022), 2008.
Oumbe, A., Bru, H., Hassar, Z., Blanc, P., Wald, L., Fournier, A., Goffe,
D., Chiesa, M., and Ghedira, H.: Selection and implementation of aerosol
data for the prediction of solar resource in United Arab Emirates,
SolarPaces Symposium, held in Marrakech, Morocco, on 11–14 September 2012,
USBKey Paper#22240, https://hal-mines-paristech.archives-ouvertes.fr/hal-00779749 (last access:
26 July 2022), 2012a.
Oumbe, A., Qu, Z., Blanc, P., Bru, H., Lefèvre, M., and Wald, L.:
Modeling circumsolar irradiance to adjust beam irradiances from radiative
transfer models to measurements, EMS Annual Meeting 2012, Lodz, Poland,
10–14 September 2012, EMS2012-152, https://meetingorganizer.copernicus.org/EMS2012/EMS2012-152.pdf (last
access: 2 October 2021), 2012b.
Oumbe, A., Bru, H., Hassar, Z., Blanc, P., Wald, L., Eissa, Y., Marpu, P.,
Gherboudj, I., Ghedira, H., and Goffe, D.: On the improvement of MACC
aerosol spatial resolution for irradiance estimation in the United Arab
Emirates, 2013 ISES Solar World Congress, held in Cancun, Mexico, 3–7
November 2013, https://hal.archives-ouvertes.fr/hal-01493638 (last access: 265 July 2022), 2013.
Oumbe, A., Qu, Z., Blanc, P., Lefèvre, M., Wald, L., and Cros, S.: Decoupling the effects of clear atmosphere and clouds to simplify calculations of the broadband solar irradiance at ground level, Geosci. Model Dev., 7, 1661–1669, https://doi.org/10.5194/gmd-7-1661-2014, 2014.
Peel, M. C., Finlayson, B. L., and McMahon, T. A.: Updated world map of the Köppen-Geiger climate classification, Hydrol. Earth Syst. Sci., 11, 1633–1644, https://doi.org/10.5194/hess-11-1633-2007, 2007.
Perez, R., Ineichen, P., Seals, R. and Zelenka, A.: Making full use of the
clearness index for parameterizing hourly insolation conditions, Sol.
Energy, 45, 111–114, https://doi.org/10.1016/0038-092X(90)90036-C, 1990.
Perez, R., Seals, R., and Zelenka, A.: Comparing satellite remote sensing
and ground network measurements for the production of site/time specific
irradiance data, Sol. Energy, 60, 89–96,
https://doi.org/10.1016/S0038-092X(96)00162-4, 1997.
Qin, Y., McVicar, T. R., Huang, J., West, S., and Steven, A. D. L.: On the
validity of using ground-based observations to validate
geostationary-satellite-derived direct and diffuse surface solar irradiance:
Quantifying the spatial mismatch and temporal averaging issues, Remote Sens.
Environ., 280, 113179, https://doi.org/10.1016/j.rse.2022.113179, 2022.
Qu, Z., Oumbe, A., Blanc, P., Espinar, B., Gesell, G., Gschwind, B.,
Klüser, L., Lefèvre, M., Saboret, L., Schroedter-Homscheidt, M., and
Wald L.: Fast radiative transfer parameterisation for assessing the surface
solar irradiance: The Heliosat-4 method, Meteorol. Z., 26, 33–57,
https://doi.org/10.1127/metz/2016/0781, 2017.
Ranchin, T., Trolliet, M., Ménard, L., and Wald, L.: Which variables are
essential for renewable energies?, Int. J. Digit. Earth, 13, 253–261,
https://doi.org/10.1080/17538947.2019.1679267, 2020.
Reno, M. J. and Hansen, C. W.: Identification of periods of clear sky
irradiance in time series of GHI measurements, Renew. Energ., 90,
520–531, https://doi.org/10.1016/j.renene.2015.12.031, 2016.
Rigollier, C., Bauer, O., and Wald, L.: On the clear sky model of the
ESRA – European Solar Radiation Atlas with respect to the Heliosat method,
Sol. Energy, 68, 33–48, https://doi.org/10.1016/S0038-092X(99)00055-9, 2000.
Roesch, A., Wild, M., Ohmura, A., Dutton, E. G., Long, C. N., and Zhang, T.: Assessment of BSRN radiation records for the computation of monthly means, Atmos. Meas. Tech., 4, 339–354, https://doi.org/10.5194/amt-4-339-2011, 2011.
Salamalikis, V., Tzoumanikas, P., Argiriou, A. A., and Kazantzidis, A.: Site
adaptation of global horizontal irradiance from the Copernicus Atmospheric
Monitoring Service for radiation using supervised machine learning
techniques, Renew. Energ., 195, 92–106,
https://doi.org/10.1016/j.renene.2022.06.043, 2022.
Salamalikis, V., Vamvakas, I., Blanc, P., and Kazantzidis, A.: Ground-based
validation of aerosol optical depth from CAMS reanalysis project: An
uncertainty input on direct normal irradiance under cloud-free conditions,
Renew. Energ., 170, 847–857, https://doi.org/10.1016/j.renene.2021.02.025,
2021.
Sauran: Southern African Universities Radiometric Network, Sauran [data set], https://sauran.ac.za/, last access: 12 August 2022.
Schaaf, C. B., Gao, F., Strahler, A. H., Lucht, W., Li, X. W., Tsang, T.,
Strugnell, N. C., Zhang, X. Y., Jin, Y. F., Muller, J. P., Lewis, P.,
Barnsley, M., Hobson, P., Disney, M., Roberts, G., Dunderdale, M., Doll, C.,
d'Entremont, R. P., Hu, B. X., Liang, S. L., Privette, J. L., and Roy, D.:
First operational BRDF, albedo nadir reflectance products from MODIS, Remote
Sens. Environ., 83, 135–148, https://doi.org/10.1016/S0034-4257(02)00091-3,
2002.
Schroedter-Homscheidt, M.: The Copernicus Atmosphere Monitoring Service
(CAMS) Radiation Service in a nutshell, v11, https://atmosphere.copernicus.eu/sites/default/files/2020-03/Copernicus_radiation_service_in_nutshell_v11.pdf (last access: 2 October 2021), 2019.
Sengupta, M., Habte, A., Wilbert, A., Gueymard, C., and Remund, J.: Best
Practices Handbook for the Collection and Use of Solar Resource Data for
Solar Energy Applications, 3rd Edn., Golden, Colorado, USA, National
Renewable Energy Laboratory, NREL/TP-5D00-77635,
https://www.nrel.gov/docs/fy21osti/77635.pdf, last access: 5 August
2021.
Sun, X., Bright, J. M., Gueymard, C. A., Acord, B., Wang, P., and Engerer, N.
A.: Worldwide performance assessment of 75 global clear-sky irradiance
models using principal component analysis, Renew. Sustain. Energy Rev., 111,
550–570, https://doi.org/10.1016/j.rser.2019.04.006, 2019.
Sun, X., Bright, J. M., Gueymard, C. A., Bai, X., Acord, B., and Wang, P.:
Worldwide performance assessment of 95 direct and diffuse clear-sky
irradiance models using principal component analysis, Renew. Sustain. Energy
Rev., 135, 110087, https://doi.org/10.1016/j.rser.2020.110087, 2021.
Sun, X., Yang, D., Gueymard, C. A., Bright, J. M., and Wang, P.: Effects of
spatial scale of atmospheric reanalysis data on clear-sky surface radiation
modeling in tropical climates: A case study for Singapore, Sol. Energy,
525–537, https://doi.org/10.1016/j.solener.2022.06.001, 2022.
Tahir, Z. R., Amjad, G. M., Hamza, M., Shad, M. R., Qamar, A., Blanc, P.,
Abbas, S., Azhar, M., Safyan, M., Abdullah, M., Atif, M., and Haider, S. T.:
Validating global horizontal irradiance estimated by McClear model under
clear-sky and all-sky conditions in Pakistan, Energ. Environ.-UK,
https://doi.org/10.1177/0958305X221118869, 2022.
Vuilleumier, L., Hauser, M., Félix, C., Vignola, F., Blanc, P.,
Kazantzidis, A., and Calpini, B.: Accuracy of ground surface broadband
shortwave radiation monitoring, J. Geophys. Res.-Atmos., 119, 13838–13860,
https://doi.org/10.1002/2014JD022335, 2014.
Wald, L.: Fundamentals of Solar Radiation, CRC Press, London, United
Kingdom, 270 pp., https://doi.org/10.1201/9781003155454, 2021.
Wald, L. and Baleynaud, J.-M.: Observing air quality over the city of Nantes
by means of Landsat thermal infrared data, Int. J. Remote Sens., 20,
947–959, https://doi.org/10.1080/014311699213019, 1999.
Wandji Nyamsi, W., Espinar, B., Blanc, P., and Wald, L.: How close to
detailed spectral calculations is the k-distribution method and
correlated-k approximation of Kato et al. (1999) in each spectral interval?,
Meteorol. Z., 23, 547–556, https://doi.org/10.1127/metz/2014/0607, 2014.
Wandji Nyamsi, W., Arola, A., Blanc, P., Lindfors, A. V., Cesnulyte, V., Pitkänen, M. R. A., and Wald, L.: Technical Note: A novel parameterization of the transmissivity due to ozone absorption in the k-distribution method and correlated-k approximation of Kato et al. (1999) over the UV band, Atmos. Chem. Phys., 15, 7449–7456, https://doi.org/10.5194/acp-15-7449-2015, 2015.
Wilbert, S., Kleindiek, S., Nouri, B., Geuder, N., Habte, A., Schwandt, M.,
and Vignola, F.: Uncertainty of rotating shadowband irradiometers and
Si-pyranometers including the spectral irradiance error, AIP Conference
Proceedings 1734, SOLARPACES 2015, Cape Town, South Africa, 13–16 October
2015, 150009, https://doi.org/10.1063/1.4949241, 2016.
WMO: Chapter 7 – Measurement of Radiation, in: Vol 1 – Measurement of
Meteorological Variables, Guide to Instruments and Methods of Observation,
WMO-No. 8, 2018 edition, World Meteorological Organization, Geneva,
Switzerland, 2018.
Yang, D.: Choice of clear-sky model in solar forecasting, J. Renew. Sustain.
Ener., 12, 026101, https://doi.org/10.1063/5.0003495, 2020.
Zelenka, A., Perez, R., Seals, R., and Renné, D.: Effective accuracy of
satellite-derived hourly irradiances, Theor. Appl. Climatol., 62, 199–207,
https://doi.org/10.1007/s007040050084, 1999.
Zhong, X. and Kleissl, J.: Clear sky irradiances using REST2 and MODIS, Sol.
Energy 116, 144–164, https://doi.org/10.1016/j.solener.2015.03.046, 2015.
Zieger, P., Fierz-Schmidhauser, R., Gysel, M., Ström, J., Henne, S., Yttri, K. E., Baltensperger, U., and Weingartner, E.: Effects of relative humidity on aerosol light scattering in the Arctic, Atmos. Chem. Phys., 10, 3875–3890, https://doi.org/10.5194/acp-10-3875-2010, 2010.
Short summary
The McClear service provides estimates of surface solar irradiances in cloud-free conditions. By comparing McClear estimates to 1 min measurements performed in Sub-Saharan Africa and the Maldives Archipelago in the Indian Ocean, McClear accurately estimates global irradiance and tends to overestimate direct irrradiance. This work establishes a general overview of the performance of the McClear service.
The McClear service provides estimates of surface solar irradiances in cloud-free conditions. By...