Articles | Volume 16, issue 20
https://doi.org/10.5194/amt-16-4885-2023
https://doi.org/10.5194/amt-16-4885-2023
Research article
 | 
26 Oct 2023
Research article |  | 26 Oct 2023

Acoustic levitation of pollen and visualisation of hygroscopic behaviour

Sophie A. Mills, Adam Milsom, Christian Pfrang, A. Rob MacKenzie, and Francis D. Pope

Related authors

Enhancing Accuracy of Indoor Air Quality Sensors via Automated Machine Learning Calibration
Juncheng Qian, Thomas Wynn, Bowen Liu, Yuli Shan, Suzanne E. Bartington, Francis D. Pope, Yuqing Dai, and Zongbo Shi
EGUsphere, https://doi.org/10.5194/egusphere-2025-3839,https://doi.org/10.5194/egusphere-2025-3839, 2025
This preprint is open for discussion and under review for Atmospheric Measurement Techniques (AMT).
Short summary
InAPI (v1.0): an Excel-based Indoor Air Pollution Inventory tool to visualise activity-based indoor concentrations of pollutants and their emission rates for the UK
Andrea Mazzeo, Christian Pfrang, and Zaheer Ahmad Nasir
EGUsphere, https://doi.org/10.5194/egusphere-2025-783,https://doi.org/10.5194/egusphere-2025-783, 2025
Short summary
Rethinking Machine Learning Weather Normalisation: A Refined Strategy for Short-term Air Pollution Policies
Yuqing Dai, Bowen Liu, Chengxu Tong, David Carslaw, Robert MacKenzie, and Zongbo Shi
EGUsphere, https://doi.org/10.5194/egusphere-2025-1376,https://doi.org/10.5194/egusphere-2025-1376, 2025
Short summary
Water usage of old-growth oak at elevated CO2 in the FACE (Free-Air CO2 Enrichment) of climate change
Susan E. Quick, Giulio Curioni, Nicholas J. Harper, Stefan Krause, and A. Robert MacKenzie
Biogeosciences, 22, 1557–1581, https://doi.org/10.5194/bg-22-1557-2025,https://doi.org/10.5194/bg-22-1557-2025, 2025
Short summary
The lifetimes and potential change in planetary albedo owing to the oxidation of thin surfactant organic films extracted from atmospheric aerosol by hydroxyl (OH) radicals at the air–water interface of particles
Rosalie H. Shepherd, Martin D. King, Andrew D. Ward, Edward J. Stuckey, Rebecca J. L. Welbourn, Neil Brough, Adam Milsom, Christian Pfrang, and Thomas Arnold
Atmos. Chem. Phys., 25, 2569–2588, https://doi.org/10.5194/acp-25-2569-2025,https://doi.org/10.5194/acp-25-2569-2025, 2025
Short summary

Cited articles

Andrade, M. A. B., Pérez, N., and Adamowski, J. C.: Review of Progress in Acoustic Levitation, Braz. J. Phys., 48, 190–213, https://doi.org/10.1007/s13538-017-0552-6, 2018. 
Andreae, M. O. and Rosenfield, D.: Aerosol-Cloud-Precipitation Interactions. Part 1. The Nature and Sources of Cloud-Active Aerosols, Earth-Sci. Rev., 89, 13–41, https://doi.org/10.1016/j.earscirev.2008.03.001, 2008. 
Božič, A. and Šiber, A.: Mechanics of inactive swelling and bursting of porate pollen grains, Biophys. J., 121, 782–792, https://doi.org/10.1016/j.bpj.2022.01.019, 2022. 
Bunderson, L. and Levetin, E.: Hygroscopic weight gain of pollen grains from Juniperus species, Int. J. Biometeorol., 59, 533–540, https://doi.org/10.1007/s00484-014-0866-9, 2015. 
Cecchi, L., Scala, E., Caronni, S., Citterio, S., and Asero, R.: Allergenicity at component level of sub-pollen particles from different sources obtained by osmolar shock: A molecular approach to thunderstorm-related asthma outbreaks, Clin. Exp. Allergy, 51, 253–261, https://doi.org/10.1111/cea.13764, 2021. 
Download
Short summary
Pollen grains are important components of the atmosphere and have the potential to impact upon cloud processes via their ability to help in the formation of rain droplets. This study investigates the hygroscopicity of two different pollen species using an acoustic levitator. Pollen grains are levitated, and their response to changes in relative humidity is investigated. A key advantage of this method is that it is possible study pollen shape under varying environmental conditions.
Share