Articles | Volume 17, issue 22
https://doi.org/10.5194/amt-17-6735-2024
https://doi.org/10.5194/amt-17-6735-2024
Research article
 | 
26 Nov 2024
Research article |  | 26 Nov 2024

Calibration of PurpleAir low-cost particulate matter sensors: model development for air quality under high relative humidity conditions

Martine E. Mathieu-Campbell, Chuqi Guo, Andrew P. Grieshop, and Jennifer Richmond-Bryant

Related authors

Performance characterization of low-cost air quality sensors for off-grid deployment in rural Malawi
Ashley S. Bittner, Eben S. Cross, David H. Hagan, Carl Malings, Eric Lipsky, and Andrew P. Grieshop
Atmos. Meas. Tech., 15, 3353–3376, https://doi.org/10.5194/amt-15-3353-2022,https://doi.org/10.5194/amt-15-3353-2022, 2022
Short summary

Cited articles

Antonopoulos, C., Gilbride, T., Margiotta, E., and Kaltreider, C.: Guide to Determining Climate Zone by County: Building America and IECC 2021 Updates, Richland, WA (United States), https://doi.org/10.2172/1893981, 2022. 
API PurpleAir: PurpleAir, Inc., PurpleAir, https://www.api.purpleair.com (last access: 23 July/2023). 
AQ-SPEC: Field Evaluation Purple Air PM Sensor, http://www.aqmd.gov/docs/default-source/aq-spec/field-evaluations/purpleair---field-evaluation.pdf (last access: 20 February 2024), 2016a. 
AQ-SPEC: by: Polidori, A., Papapostolou, V., Zhang, H.: Laboratory Evaluation of Low-Cost Air Quality Sensors: Laboratory Setup and Testing Protocol, South Coast Air Quality Management District: Diamondbar, CA, USA, 2016b. 
Ardon-Dryer, K., Dryer, Y., Williams, J. N., and Moghimi, N.: Measurements of PM2.5 with PurpleAir under atmospheric conditions, Atmos. Meas. Tech., 13, 5441–5458, https://doi.org/10.5194/amt-13-5441-2020, 2020. 
Download
Short summary
The main source of measurement error from particulate matter PurpleAir sensors is relative humidity. Recent bias correction methods have not focused on the humid southeastern United States (US). To provide high-quality spatial and temporal data to inform community exposure in this area, our study developed and evaluated PurpleAir correction models for use in the warm–humid climate zones of the US. We found improved performance metrics, with error metrics decreasing by 16–23 % for our models.
Share