Articles | Volume 17, issue 22
https://doi.org/10.5194/amt-17-6735-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/amt-17-6735-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Calibration of PurpleAir low-cost particulate matter sensors: model development for air quality under high relative humidity conditions
Martine E. Mathieu-Campbell
Center for Geospatial Analytics, North Carolina State University, Raleigh, NC 27695, USA
Chuqi Guo
Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC 27695, USA
Andrew P. Grieshop
Department of Civil, Construction and Environmental Engineering, North Carolina State University, Raleigh, NC 27695, USA
Jennifer Richmond-Bryant
CORRESPONDING AUTHOR
Center for Geospatial Analytics, North Carolina State University, Raleigh, NC 27695, USA
Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC 27695, USA
Related authors
No articles found.
Ashley S. Bittner, Eben S. Cross, David H. Hagan, Carl Malings, Eric Lipsky, and Andrew P. Grieshop
Atmos. Meas. Tech., 15, 3353–3376, https://doi.org/10.5194/amt-15-3353-2022, https://doi.org/10.5194/amt-15-3353-2022, 2022
Short summary
Short summary
We present findings from a 1-year pilot deployment of low-cost integrated air quality sensor packages in rural Malawi using calibration models developed during collocation with US regulatory monitors. We compare the results with data from remote sensing products and previous field studies. We conclude that while the remote calibration approach can help extract useful data, great care is needed when assessing low-cost sensor data collected in regions without reference instrumentation.
Cited articles
Antonopoulos, C., Gilbride, T., Margiotta, E., and Kaltreider, C.: Guide to Determining Climate Zone by County: Building America and IECC 2021 Updates, Richland, WA (United States), https://doi.org/10.2172/1893981, 2022.
API PurpleAir: PurpleAir, Inc., PurpleAir, https://www.api.purpleair.com (last access: 23 July/2023).
AQ-SPEC: Field Evaluation Purple Air PM Sensor, http://www.aqmd.gov/docs/default-source/aq-spec/field-evaluations/purpleair---field-evaluation.pdf (last access: 20 February 2024), 2016a.
AQ-SPEC: by: Polidori, A., Papapostolou, V., Zhang, H.: Laboratory Evaluation of Low-Cost Air Quality Sensors: Laboratory Setup and Testing Protocol, South Coast Air Quality Management District: Diamondbar, CA, USA, 2016b.
Ardon-Dryer, K., Dryer, Y., Williams, J. N., and Moghimi, N.: Measurements of PM2.5 with PurpleAir under atmospheric conditions, Atmos. Meas. Tech., 13, 5441–5458, https://doi.org/10.5194/amt-13-5441-2020, 2020.
Baechler, M. C., Gilbride, T. L., Cole, P. C., Hefty, M. G., and Ruiz, K.: Guide to Determining Climate Regions by County, Prepared for the U.S. Department of Energy under Contract DE-AC05-76RLO 1830, Pacific Northwest National Laboratory & Oak Ridge National Laboratory, TN, 2015.
Barkjohn, K. K., Gantt, B., and Clements, A. L.: Development and application of a United States-wide correction for PM2.5 data collected with the PurpleAir sensor, Atmos. Meas. Tech., 14, 4617–4637, https://doi.org/10.5194/amt-14-4617-2021, 2021.
Barkjohn, K. K., Holder, A. L., Frederick, S. G., and Clements, A. L.: Correction and Accuracy of PurpleAir PM2.5 Measurements for Extreme Wildfire Smoke, Sensors, 22, 24, https://doi.org/10.3390/s22249669, 2022.
Bi, J., Wildani, A., Chang, H. H., and Liu, Y.: Incorporating Low-Cost Sensor Measurements into High-Resolution PM2.5 Modeling at a Large Spatial Scale, Environ. Sci. Technol., 54, 2152–2162, https://doi.org/10.1021/acs.est.9b06046, 2020.
Bi, J., Wallace, L. A., Sarnat, J. A., and Liu, Y.: Characterizing outdoor infiltration and indoor contribution of PM2.5 with citizen-based low-cost monitoring data, Environ. Pollut., 276, 116763, https://doi.org/10.1016/J.ENVPOL.2021.116763, 2021.
Boehmke, B. and Greenwell, B.: Hands-On Machine Learning with R, Chapman and Hall/CRC, New-York, https://doi.org/10.1201/9780367816377, 2019.
Brook, R. D., Rajagopalan, S., Pope, C. A., Brook, J. R., Bhatnagar, A., Diez-Roux, A. V., Holguin, F., Hong, Y., Luepker, R. V., Mittleman, M. A., Peters, A., Siscovick, D., Smith, S. C., Whitsel, L., and Kaufman, J. D.: Particulate matter air pollution and cardiovascular disease: An update to the scientific statement from the american heart association, Circulation, 121, 2331–2378, https://doi.org/10.1161/CIR.0b013e3181dbece1, 2010.
Carlton, A. G., Pye, H. O. T., Baker, K. R., and Hennigan, C. J.: Additional Benefits of Federal Air-Quality Rules: Model Estimates of Controllable Biogenic Secondary Organic Aerosol, Environ. Sci. Technol., 52, 9254–9265, https://doi.org/10.1021/acs.est.8b01869, 2018.
Carrico, C. M., Petters, M. D., Kreidenweis, S. M., Sullivan, A. P., McMeeking, G. R., Levin, E. J. T., Engling, G., Malm, W. C., and Collett Jr., J. L.: Water uptake and chemical composition of fresh aerosols generated in open burning of biomass, Atmos. Chem. Phys., 10, 5165–5178, https://doi.org/10.5194/acp-10-5165-2010, 2010.
Carslaw, D.: worldmet: Import Surface Meteorological Data from NOAA Integrated Surface Database (ISD), R package licensed under the GNU General Public License, Repository: CRAN, https://davidcarslaw.github.io/worldmet/index.html (last access: 11 September 2024), 2023.
Charrad, M., Ghazzali, N., Boiteau, V., and Niknafs, A.: Nbclust: An R package for determining the relevant number of clusters in a data set, J. Stat. Softw., 61, 54–55, https://doi.org/10.18637/jss.v061.i06, 2014.
Chen, L., Zhang, F., Zhang, D., Wang, X., Song, W., Liu, J., Ren, J., Jiang, S., Li, X., and Li, Z.: Measurement report: Hygroscopic growth of ambient fine particles measured at five sites in China, Atmos. Chem. Phys., 22, 6773–6786, https://doi.org/10.5194/acp-22-6773-2022, 2022.
Chen, L. J., Ho, Y. H., Lee, H. C., Wu, H. C., Liu, H. M., Hsieh, H. H., Huang, Y. Te, and Lung, S. C. C.: An Open Framework for Participatory PM2.5 Monitoring in Smart Cities, IEEE Access, 5, 14441–14454, https://doi.org/10.1109/ACCESS.2017.2723919, 2017.
Chen, R., Hu, B., Liu, Y., Xu, J., Yang, G., Xu, D., and Chen, C.: Beyond PM2.5: The role of ultrafine particles on adverse health effects of air pollution, BBA Gen. Subjects, 1860, 2844–2855, https://doi.org/10.1016/j.bbagen.2016.03.019, 2016.
Cohen, A. J., Brauer, M., Burnett, R., Anderson, H. R., Frostad, J., Estep, K., Balakrishnan, K., Brunekreef, B., Dandona, L., Dandona, R., Feigin, V., Freedman, G., Hubbell, B., Jobling, A., Kan, H., Knibbs, L., Liu, Y., Martin, R., Morawska, L., Pope, C. A., Shin, H., Straif, K., Shaddick, G., Thomas, M., van Dingenen, R., van Donkelaar, A., Vos, T., Murray, C. J. L., and Forouzanfar, M. H.: Estimates and 25-year trends of the global burden of disease attributable to ambient air pollution: an analysis of data from the Global Burden of Diseases Study 2015, Lancet, 389, 1907–1918, https://doi.org/10.1016/S0140-6736(17)30505-6, 2017.
deSouza, P., Karoline Barkjohn, ab, Clements, A., Lee, J., Kahn, R., Crawford, B., and Kinney, P.: An analysis of degradation in low-cost particulate matter sensors, Environ. Sci. Atmos., 3, 521–536, https://doi.org/10.1039/d2ea00142j, 2023.
Duvall, R. M., Clements, A. L., Hagler, G., Kamal, A., Kilaru, V., Goodman, L., Frederick, S., Barkjohn, K. K., VonWald, I., Greene, D., and Dye, T.: Performance Testing Protocols, Metrics, and Target Values for Fine Particulate Matter Air Sensors: Use in Ambient, Outdoor, Fixed Site, Non-Regulatory Supplemental and Informational Monitoring Applications, U.S. EPA Office of Research and Development, Washington, DC, EPA/600/R-20/280, 79 pp., https://cfpub.epa.gov/si/si_public_record_Report.cfm?dirEntryId=350785&Lab=CEMM (last access: 20 February 2024), 2021.
Giordano, M. R., Malings, C., Pandis, S. N., Presto, A. A., McNeill, V. F., Westervelt, D. M., Beekmann, M., and Subramanian, R.: From low-cost sensors to high-quality data: A summary of challenges and best practices for effectively calibrating low-cost particulate matter mass sensors, J. Aerosol Sci., 158, 105833 p., https://doi.org/10.1016/j.jaerosci.2021.105833, 2021.
Hagan, D. H. and Kroll, J. H.: Assessing the accuracy of low-cost optical particle sensors using a physics-based approach, Atmos. Meas. Tech., 13, 6343–6355, https://doi.org/10.5194/amt-13-6343-2020, 2020.
Hartigan, J. A. and Wong, M. A.: Algorithm AS 136: A K-Means Clustering Algorithm, Appl. Stat, 28, 100–108, https://doi.org/10.2307/2346830, 1979.
He, M., Kuerbanjiang, N., and Dhaniyala, S.: Performance characteristics of the low-cost Plantower PMS optical sensor, Aerosol Sci. Tech., 54, 232–241, https://doi.org/10.1080/02786826.2019.1696015, 2020.
Health Effects Institute: State of Global Air 2020: a special report on global exposure to air pollution and its health impacts. Special Report, Health Effects Institute, Boston, MA, ISSN 2578-6873, 2020.
Healy, R. M., Evans, G. J., Murphy, M., Jurányi, Z., Tritscher, T., Laborde, M., Weingartner, E., Gysel, M., Poulain, L., Kamilli, K. A., Wiedensohler, A., O'Connor, I. P., McGillicuddy, E., Sodeau, J. R., and Wenger, J. C.: Predicting hygroscopic growth using single particle chemical composition estimates, J. Geophys. Res., 119, 9567–9577, https://doi.org/10.1002/2014JD021888, 2014.
Holder, A. L., Mebust, A. K., Maghran, L. A., McGown, M. R., Stewart, K. E., Vallano, D. M., Elleman, R. A., and Baker, K. R.: Field evaluation of low-cost particulate matter sensors for measuring wildfire smoke, Sensors (Switzerland), 20, 4796, https://doi.org/10.3390/s20174796, 2020.
International Energy Conservation Code: Chapter 3, General requirements, International Energy Conservation Code (IECC), https://codes.iccsafe.org/content/IECC2021P2/chapter-3-re-general-requirements (last access: last access: 18 December 2023), 2021.
Jaffe, D. A., Miller, C., Thompson, K., Finley, B., Nelson, M., Ouimette, J., and Andrews, E.: An evaluation of the U.S. EPA's correction equation for PurpleAir sensor data in smoke, dust, and wintertime urban pollution events, Atmos. Meas. Tech., 16, 1311–1322, https://doi.org/10.5194/amt-16-1311-2023, 2023.
Jamriska, M., Morawska, L., and Mergersen, K.: The effect of temperature and humidity on size segregated traffic exhaust particle emissions, Atmos. Environ., 42, 2369–2382, https://doi.org/10.1016/j.atmosenv.2007.12.038, 2008.
Jayaratne, R., Liu, X., Thai, P., Dunbabin, M., and Morawska, L.: The influence of humidity on the performance of a low-cost air particle mass sensor and the effect of atmospheric fog, Atmos. Meas. Tech., 11, 4883–4890, https://doi.org/10.5194/amt-11-4883-2018, 2018.
Jiao, W., Hagler, G., Williams, R., Sharpe, R., Brown, R., Garver, D., Judge, R., Caudill, M., Rickard, J., Davis, M., Weinstock, L., Zimmer-Dauphinee, S., and Buckley, K.: Community Air Sensor Network (CAIRSENSE) project: evaluation of low-cost sensor performance in a suburban environment in the southeastern United States, Atmos. Meas. Tech., 9, 5281–5292, https://doi.org/10.5194/amt-9-5281-2016, 2016.
Kelly, K. E., Whitaker, J., Petty, A., Widmer, C., Dybwad, A., Sleeth, D., Martin, R., and Butterfield, A.: Ambient and laboratory evaluation of a low-cost particulate matter sensor, Environ. Pollut., 221,491–500, https://doi.org/10.1016/j.envpol.2016.12.039, 2017.
Kim, S., Park, S., and Lee, J.: Evaluation of performance of inexpensive laser based PM2.5 sensor monitors for typical indoor and outdoor hotspots of South Korea, Appl. Sci.Basel, 9, 1947, https://doi.org/10.3390/app9091947, 2019.
Konrad, C. E., Fuhrmann, C. M., Billiot, A., Keim, B. D., Kruk, M. C., Kunkel, K. E., Needham, H., Shafer, M., and Stevens, L.: Climate of the southeast USA: past, present, and future, in: Climate of the southeast United States: Variability, change, impacts, and vulnerability, edited by: Island Press/Center for Resource Economics, Washington, DC, 8–42, https://doi.org/10.5822/978-1-61091-509-0_2, 2013.
Kramer, A. L., Liu, J., Li, L., Connolly, R., Barbato, M., and Zhu, Y.: Environmental justice analysis of wildfire-related PM2.5 exposure using low-cost sensors in California, Sci. Total Environ., 856, 159218, https://doi.org/10.1016/J.SCITOTENV.2022.159218, 2023.
Landrigan, P. J., Fuller, R., Acosta, N. J. R., Adeyi, O., Arnold, R., Basu, N. (Nil), Baldé, A. B., Bertollini, R., Bose-O'Reilly, S., Boufford, J. I., Breysse, P. N., Chiles, T., Mahidol, C., Coll-Seck, A. M., Cropper, M. L., Fobil, J., Fuster, V., Greenstone, M., Haines, A., Hanrahan, D., Hunter, D., Khare, M., Krupnick, A., Lanphear, B., Lohani, B., Martin, K., Mathiasen, K. V., McTeer, M. A., Murray, C. J. L., Ndahimananjara, J. D., Perera, F., Potočnik, J., Preker, A. S., Ramesh, J., Rockström, J., Salinas, C., Samson, L. D., Sandilya, K., Sly, P. D., Smith, K. R., Steiner, A., Stewart, R. B., Suk, W. A., van Schayck, O. C. P., Yadama, G. N., Yumkella, K., and Zhong, M.: The Lancet Commission on pollution and health, The lancet, 391, 462–512, https://doi.org/10.1016/S0140-6736(17)32345-0, 2018.
Lu, T., Liu, Y., Garcia, A., Wang, M., Li, Y., Bravo-villasenor, G., Campos, K., Xu, J., and Han, B.: Leveraging Citizen Science and Low-Cost Sensors to Characterize Air Pollution Exposure of Disadvantaged Communities in Southern California, Int. J. Env. Res. Pub. He., 19, 8777, https://doi.org/10.3390/ijerph19148777, 2022.
Magi, B. I., Cupini, C., Francis, J., Green, M., and Hauser, C.: Evaluation of PM2.5 measured in an urban setting using a low-cost optical particle counter and a Federal Equivalent Method Beta Attenuation Monitor, Aerosol Sci. Tech., 54, 147–159, https://doi.org/10.1080/02786826.2019.1619915, 2020.
Malings, C., Tanzer, R., Hauryliuk, A., Saha, P. K., Robinson, A. L., Presto, A. A., and Subramanian, R.: Fine particle mass monitoring with low-cost sensors: Corrections and long-term performance evaluation, Aerosol Sci. Tech., 54, 160–174, https://doi.org/10.1080/02786826.2019.1623863, 2020.
MartineMathieu: MartineMathieu/PurpleAir-calibration: PurpleAir Bias Correction v1.0.0 (v1.0.0), Zenodo [data set], https://doi.org/10.5281/zenodo.14109566, 2024.
Maugis, C., Celeux, G., and Martin-Magniette, M. L.: Variable selection for clustering with gaussian mixture models, Biometrics, 65, 701–709, https://doi.org/10.1111/j.1541-0420.2008.01160.x, 2009.
McFarlane, C., Raheja, G., Malings, C., Appoh, E. K. E., Hughes, A. F., and Westervelt, D. M.: Application of Gaussian Mixture Regression for the Correction of Low Cost PM2.5Monitoring Data in Accra, Ghana, ACS Earth Space Chem., 5, 2268–2279, https://doi.org/10.1021/acsearthspacechem.1c00217, 2021.
Nilson, B., Jackson, P. L., Schiller, C. L., and Parsons, M. T.: Development and evaluation of correction models for a low-cost fine particulate matter monitor, Atmos. Meas. Tech., 15, 3315–3328, https://doi.org/10.5194/amt-15-3315-2022, 2022.
Olstrup, H., Johansson, C., Forsberg, B., Tornevi, A., Ekebom, A., and Meister, K.: A multi-pollutant air quality health index (AQHI) based on short-term respiratory effects in Stockholm, Sweden, Int. J. Env. Res. Pub. He., 16, 105, https://doi.org/10.3390/ijerph16010105, 2019.
Patel, M. Y., Vannucci, P. F., Kim, J., Berelson, W. M., and Cohen, R. C.: Towards a hygroscopic growth calibration for low-cost PM2.5 sensors, Atmos. Meas. Tech., 17, 1051–1060, https://doi.org/10.5194/amt-17-1051-2024, 2024.
Pope, C. A. and Dockery, D. W.: Health effects of fine particulate air pollution: Lines that connect, J. Air Waste Manage., 56, 709–742, https://doi.org/10.1080/10473289.2006.10464485, 2006.
Raftery, A. E. and Dean, N.: Variable selection for model-based clustering, J. Am. Stat. Assoc., 101, 168–178, https://doi.org/10.1198/016214506000000113, 2006.
Raheja, G., Nimo, J., Appoh, E. K. E., Essien, B., Sunu, M., Nyante, J., Amegah, M., Quansah, R., Arku, R. E., Penn, S. L., Giordano, M. R., Zheng, Z., Jack, D., Chillrud, S., Amegah, K., Subramanian, R., Pinder, R., Appah-Sampong, E., Tetteh, E. N., Borketey, M. A., Hughes, A. F., and Westervelt, D. M.: Low-Cost Sensor Performance Intercomparison, Correction Factor Development, and 2+ Years of Ambient PM2.5 Monitoring in Accra, Ghana, Environ. Sci. Technol., 57, 10708–10720, https://doi.org/10.1021/acs.est.2c09264, 2023.
Rueda, E. M., Carter, E., L'Orange, C., Quinn, C., and Volckens, J.: Size-Resolved Field Performance of Low-Cost Sensors for Particulate Matter Air Pollution, Environ. Sci. Tech. Let, 10, 247–253, https://doi.org/10.1021/acs.estlett.3c00030, 2023.
Sayahi, T., Butterfield, A., and Kelly, K. E.: Long-term field evaluation of the Plantower PMS low-cost particulate matter sensors, Environ. Pollut., 245, 932–940, https://doi.org/10.1016/j.envpol.2018.11.065, 2019.
Searle, N., Kaur, K., and Kelly, K.: Technical note: Identifying a performance change in the Plantower PMS 5003 particulate matter sensor, J. Aerosol Sci., 174, 106256, https://doi.org/10.1016/j.jaerosci.2023.106256, 2023.
Shi, J. Q. and Choi, T.: Gaussian process regression analysis for functional data, CRC press, Taylor & Francis Group, Boca Raton, FL, https://doi.org/10.1201/b11038, 2011.
Snyder, E. G., Watkins, T. H., Solomon, P. A., Thoma, E. D., Williams, R. W., Hagler, G. S. W., Shelow, D., Hindin, D. A., Kilaru, V. J., and Preuss, P. W.: The changing paradigm of air pollution monitoring, Environ. Sci. Technol., 47, 11369–11377, https://doi.org/10.1021/es4022602, 2013.
Stavroulas, I., Grivas, G., Michalopoulos, P., Liakakou, E., Bougiatioti, A., Kalkavouras, P., Fameli, K. M., Hatzianastassiou, N., Mihalopoulos, N., and Gerasopoulos, E.: Field evaluation of low-cost PM sensors (Purple Air PA-II) Under variable urban air quality conditions, in Greece, Atmosphere-Basel, 11, 926, https://doi.org/10.3390/atmos11090926, 2020.
Tryner, J., L'Orange, C., Mehaffy, J., Miller-Lionberg, D., Hofstetter, J. C., Wilson, A., and Volckens, J.: Laboratory evaluation of low-cost PurpleAir PM monitors and in-field correction using co-located portable filter samplers, Atmos. Environ., 220, 117067, https://doi.org/10.1016/j.atmosenv.2019.117067, 2020.
U.S. EPA: Understanding Air Pollution in the South- eastern United States, U. S. Environmental Protection Agency, https://www.epa.gov/sciencematters/ understanding-air-pollution-southeastern-united-states (last access: 27 June 2024), 3 December 2018.
U.S. EPA: List of designated reference and equivalent methods, U. S. Environmental Protection Agency, Research Triangle Park, NC 27711, 2023.
U. S. Environmental Protection Agency: AirNow API, https://www.airnow.gov (last access: 29 August 2023), 2023.
U. S. Environmental Protection Agency: Air Quality System (AQS), https://www.epa.gov/aqs (last access: 29 August 2023), 2023.
Wallace, L., Bi, J., Ott, W. R., Sarnat, J., and Liu, Y.: Calibration of low-cost PurpleAir outdoor monitors using an improved method of calculating PM2.5, Atmos. Environ., 256, 118432, https://doi.org/10.1016/j.atmosenv.2021.118432, 2021.
Wallace, L., Zhao, T., and Klepeis, N. E.: Calibration of PurpleAir PA-I and PA-II Monitors Using Daily Mean PM2.5 Concentrations Measured in California, Washington, and Oregon from 2017 to 2021, Sensors, 22, 4741, https://doi.org/10.3390/s22134741, 2022.
Yuan, C. and Yang, H.: Research on K-Value Selection Method of K-Means Clustering Algorithm, J (Basel), 2, 226–235, https://doi.org/10.3390/j2020016, 2019.
Zheng, T., Bergin, M. H., Johnson, K. K., Tripathi, S. N., Shirodkar, S., Landis, M. S., Sutaria, R., and Carlson, D. E.: Field evaluation of low-cost particulate matter sensors in high- and low-concentration environments, Atmos. Meas. Tech., 11, 4823–4846, https://doi.org/10.5194/amt-11-4823-2018, 2018.
Zusman, M., Schumacher, C. S., Gassett, A. J., Spalt, E. W., Austin, E., Larson, T. V., Carvlin, G., Seto, E., Kaufman, J. D., and Sheppard, L.: Calibration of low-cost particulate matter sensors: Model development for a multi-city epidemiological study, Environ. Int., 134, 105329, https://doi.org/10.1016/j.envint.2019.105329, 2020.
Short summary
The main source of measurement error from particulate matter PurpleAir sensors is relative humidity. Recent bias correction methods have not focused on the humid southeastern United States (US). To provide high-quality spatial and temporal data to inform community exposure in this area, our study developed and evaluated PurpleAir correction models for use in the warm–humid climate zones of the US. We found improved performance metrics, with error metrics decreasing by 16–23 % for our models.
The main source of measurement error from particulate matter PurpleAir sensors is relative...