Articles | Volume 18, issue 4
https://doi.org/10.5194/amt-18-953-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/amt-18-953-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Cluster analysis of vertical polarimetric radio occultation profiles and corresponding liquid and ice water paths from Global Precipitation Measurement (GPM) microwave data
Applied Mathematics Program, Yale University, New Haven, CT, United States of America
NASA Jet Propulsion Laboratory, California Institute of Technology, La Cañada Flintridge, CA, United States of America
Manuel de la Torre Juárez
CORRESPONDING AUTHOR
NASA Jet Propulsion Laboratory, California Institute of Technology, La Cañada Flintridge, CA, United States of America
Terence L. Kubar
NASA Jet Propulsion Laboratory, California Institute of Technology, La Cañada Flintridge, CA, United States of America
Joint Institute for Regional Earth Systems Science and Engineering, University of California at Los Angeles, Los Angeles, CA, United States of America
F. Joseph Turk
NASA Jet Propulsion Laboratory, California Institute of Technology, La Cañada Flintridge, CA, United States of America
Kuo-Nung Wang
NASA Jet Propulsion Laboratory, California Institute of Technology, La Cañada Flintridge, CA, United States of America
Ramon Padullés
Institut de Ciències de l'Espai, Consejo Superior de Investigaciones Cientificas, Barcelona, Spain
Related authors
Terence L. Kubar, Manuel de la Torre Juarez, Jonas Katona, and F. Joseph Turk
EGUsphere, https://doi.org/10.5194/egusphere-2024-3898, https://doi.org/10.5194/egusphere-2024-3898, 2025
Short summary
Short summary
We analyze space-borne observations of simultaneous vertical profiles of precipitation, cloud layers, and temperatures, and find that about 80–90 % of cloud tops globally reach or are below the level of least stability. Since water vapor is limited at these low temperatures, this height may be a more important constraint on cloud top heights than the tropopause height below the level of maximum stability. Only the heaviest precipitating clouds vertically extend above this most unstable level.
Sara Vannah, Stephen S. Leroy, Chi O. Ao, E. Robert Kursinski, Kevin J. Nelson, Kuo-Nung Wang, and Feiqin Xie
Atmos. Meas. Tech., 18, 4293–4310, https://doi.org/10.5194/amt-18-4293-2025, https://doi.org/10.5194/amt-18-4293-2025, 2025
Short summary
Short summary
Uncertainty estimation for Global Navigation Satellite System (GNSS) radio occultation (RO) soundings in the planetary boundary layer (PBL) depends on the algorithms used to process the RO data. We compare the refractivity retrievals from three RO processing centers – each with their own retrieval algorithm – in the PBL, finding a strong underestimation of refractivity in regions with the strongest refractivity gradients, especially in Jet Propulsion Laboratory (JPL) processing, as well as areas of weak overestimation of refractivity near the poles.
Shunsuke Aoki, Takuji Kubota, and Francis Joseph Turk
EGUsphere, https://doi.org/10.5194/egusphere-2025-3596, https://doi.org/10.5194/egusphere-2025-3596, 2025
This preprint is open for discussion and under review for Atmospheric Measurement Techniques (AMT).
Short summary
Short summary
The EarthCARE/CPR provides the first spaceborne Doppler velocity measurements, while the GPM/DPR excels at observing rain and heavy snow, which are more attenuated in CPR. Using coincident observations from both radars, we examined vertical motions in stratiform and convective precipitation systems. The synergy between the radars enables a more comprehensive understanding of hydrometeor fall speeds and vertical air motions across different precipitation types.
Antía Paz, Ramon Padullés, and Estel Cardellach
EGUsphere, https://doi.org/10.5194/egusphere-2025-1950, https://doi.org/10.5194/egusphere-2025-1950, 2025
Short summary
Short summary
This study explores how different assumptions in cloud microphysics affect the vertical distribution of hydrometeors during extreme precipitation events, such as atmospheric rivers. Using a combination of high-resolution weather simulations and radiative transfer modeling, we identify snow as the dominant contributor to the observed vertical signal. The analysis highlights the sensitivity of precipitation structure to particle properties, that could help refine atmospheric modeling approaches.
Terence L. Kubar, Manuel de la Torre Juarez, Jonas Katona, and F. Joseph Turk
EGUsphere, https://doi.org/10.5194/egusphere-2024-3898, https://doi.org/10.5194/egusphere-2024-3898, 2025
Short summary
Short summary
We analyze space-borne observations of simultaneous vertical profiles of precipitation, cloud layers, and temperatures, and find that about 80–90 % of cloud tops globally reach or are below the level of least stability. Since water vapor is limited at these low temperatures, this height may be a more important constraint on cloud top heights than the tropopause height below the level of maximum stability. Only the heaviest precipitating clouds vertically extend above this most unstable level.
Shu-Ya Chen, Ying-Hwa Kuo, Hsiu-Wen Li, Ramon Padullés, Estel Cardellach, and F. Joseph Turk
EGUsphere, https://doi.org/10.5194/egusphere-2024-3708, https://doi.org/10.5194/egusphere-2024-3708, 2025
Short summary
Short summary
This study used Polarimetric radio occultation (PRO) observations to evaluate simulations of cloud hydrometeors with five microphysics schemes for three typhoons from 2019 and 2021. The simulated cloud hydrometeors distributions varied significantly depending on model initial conditions, typhoon structures, and microphysics schemes. Results in this study demonstrate the potential for using PRO observation to evaluate the performance of different microphysics schemes in numerical models.
Ramon Padullés, Estel Cardellach, Antía Paz, Santi Oliveras, Douglas C. Hunt, Sergey Sokolovskiy, Jan-Peter Weiss, Kuo-Nung Wang, F. Joe Turk, Chi O. Ao, and Manuel de la Torre Juárez
Earth Syst. Sci. Data, 16, 5643–5663, https://doi.org/10.5194/essd-16-5643-2024, https://doi.org/10.5194/essd-16-5643-2024, 2024
Short summary
Short summary
This dataset provides, for the first time, combined observations of clouds and precipitation with coincident retrievals of atmospheric thermodynamics obtained from the same space-based instrument. Furthermore, it provides the locations of the ray trajectories of the observations along various precipitation-related products interpolated into them with the aim of fostering the use of such dataset in scientific and operational applications.
Kuo-Nung Wang, Chi O. Ao, Mary G. Morris, George A. Hajj, Marcin J. Kurowski, Francis J. Turk, and Angelyn W. Moore
Atmos. Meas. Tech., 17, 583–599, https://doi.org/10.5194/amt-17-583-2024, https://doi.org/10.5194/amt-17-583-2024, 2024
Short summary
Short summary
In this article, we described a joint retrieval approach combining two techniques, RO and MWR, to obtain high vertical resolution and solve for temperature and moisture independently. The results show that the complicated structure in the lower troposphere can be better resolved with much smaller biases, and the RO+MWR combination is the most stable scenario in our sensitivity analysis. This approach is also applied to real data (COSMIC-2/Suomi-NPP) to show the promise of joint RO+MWR retrieval.
Ramon Padullés, Estel Cardellach, and F. Joseph Turk
Atmos. Chem. Phys., 23, 2199–2214, https://doi.org/10.5194/acp-23-2199-2023, https://doi.org/10.5194/acp-23-2199-2023, 2023
Short summary
Short summary
The results of comparing the polarimetric radio occultation observables and the ice water content retrieved from the CloudSat radar in a global and statistical way show a strong correlation between the geographical patterns of both quantities for a wide range of heights. This implies that horizontally oriented hydrometeors are systematically present through the whole globe and through all vertical levels, which could provide insights on the physical processes leading to precipitation.
Miguel Ricardo A. Hilario, Ewan Crosbie, Michael Shook, Jeffrey S. Reid, Maria Obiminda L. Cambaliza, James Bernard B. Simpas, Luke Ziemba, Joshua P. DiGangi, Glenn S. Diskin, Phu Nguyen, F. Joseph Turk, Edward Winstead, Claire E. Robinson, Jian Wang, Jiaoshi Zhang, Yang Wang, Subin Yoon, James Flynn, Sergio L. Alvarez, Ali Behrangi, and Armin Sorooshian
Atmos. Chem. Phys., 21, 3777–3802, https://doi.org/10.5194/acp-21-3777-2021, https://doi.org/10.5194/acp-21-3777-2021, 2021
Short summary
Short summary
This study characterizes long-range transport from major Asian pollution sources into the tropical northwest Pacific and the impact of scavenging on these air masses. We combined aircraft observations, HYSPLIT trajectories, reanalysis, and satellite retrievals to reveal distinct composition and size distribution profiles associated with specific emission sources and wet scavenging. The results of this work have implications for international policymaking related to climate and health.
Cited articles
Ao, C. O., Waliser, D. E., Chan, S. K., Li, J.-L., Tian, B., Xie, F., and Mannucci, A. J.: Planetary boundary layer heights from GPS radio occultation refractivity and humidity profiles, J. Geophys. Res.-Atmos., 117, D16117, https://doi.org/10.1029/2012JD017598, 2012. a
Biondi, R., Randel, W. J., Ho, S.-P., Neubert, T., and Syndergaard, S.: Thermal structure of intense convective clouds derived from GPS radio occultations, Atmos. Chem. Phys., 12, 5309–5318, https://doi.org/10.5194/acp-12-5309-2012, 2012. a
Bretherton, C. S., Peters, M. E., and Back, L. E.: Relationships between Water Vapor Path and Precipitation over the Tropical Oceans, J. Climate, 17, 1517–1528, https://doi.org/10.1175/1520-0442(2004)017<1517:rbwvpa>2.0.co;2, 2004. a
Cardellach, E., Oliveras, S., Rius, A., Tomás, S., Ao, C. O., Franklin, G. W., Iijima, B. A., Kuang, D., Meehan, T. K., Padullés, R., de la Torre Juárez, M., Turk, F. J., Hunt, D. C., Schreiner, W. S., Sokolovskiy, S. V., Hove, T. V., Weiss, J. P., Yoon, Y., Zeng, Z., Clapp, J., Xia-Serafino, W., and Cerezo, F.: Sensing Heavy Precipitation With GNSS Polarimetric Radio Occultations, Geophys. Res. Lett., 46, 1024–1031, https://doi.org/10.1029/2018gl080412, 2019. a, b, c, d, e
Cardellach, E., Padullés, R., and Oliveras, S.: Radio Occultation and Heavy Precipitation with PAZ (ROHP-PAZ), https://paz.ice.csic.es/dataAcces.php?idi=EN (last access: 29 December 2023), 2020. a
de la Torre Juárez, M., Padullés, R., Turk, F. J., and Cardellach, E.: Signatures of Heavy Precipitation on the Thermodynamics of Clouds Seen From Satellite: Changes Observed in Temperature Lapse Rates and Missed by Weather Analyses, J. Geophys. Res.-Atmos., 123, 13033–13045, https://doi.org/10.1029/2017JD028170, 2018. a, b
Dutton, J.: The Ceaseless Wind: An Introduction to the Theory of Atmospheric Motion, McGraw-Hill, ISBN 9780070184077, https://books.google.com/books?id=9CxRAAAAMAAJ (last access: 28 April 2024), 1976. a
Emmenegger, T., Kuo, Y.-H., Xie, S., Zhang, C., Tao, C., and Neelin, J. D.: Evaluating Tropical Precipitation Relations in CMIP6 Models with ARM Data, J. Climate, 35, 6343–6360, https://doi.org/10.1175/JCLI-D-21-0386.1, 2022. a, b
Friehe, C. A., Rue, J. C. L., Champagne, F. H., Gibson, C. H., and Dreyer, G. F.: Effects of temperature and humidity fluctuations on the optical refractive index in the marine boundary layer, J. Opt. Soc. Am., 65, 1502–1511, https://doi.org/10.1364/JOSA.65.001502, 1975. a
Fueglistaler, S., Dessler, A. E., Dunkerton, T. J., Folkins, I., Fu, Q., and Mote, P. W.: Tropical tropopause layer, Rev. Geophys., 47, RG1004, https://doi.org/10.1029/2008RG000267, 2009. a, b
Gleisner, H., Ringer, M. A., and Healy, S. B.: Monitoring global climate change using GNSS radio occultation, Clim. Atmos. Sci., 5, 6, https://doi.org/10.1038/s41612-022-00229-7, 2022. a
Govender, P. and Sivakumar, V.: Application of k-means and hierarchical clustering techniques for analysis of air pollution: A review (1980–2019), Atmos. Pollut. Res., 11, 40–56, https://doi.org/10.1016/j.apr.2019.09.009, 2020. a
Hajj, G., Kursinski, E., Romans, L., Bertiger, W., and Leroy, S.: A technical description of atmospheric sounding by GPS occultation, J. Atmos. Solar-Terrest. Phys., 64, 451–469, https://doi.org/10.1016/S1364-6826(01)00114-6, 2002. a, b
Holloway, C. E. and Neelin, J. D.: Temporal Relations of Column Water Vapor and Tropical Precipitation, J. Atmos. Sci., 67, 1091–1105, https://doi.org/10.1175/2009JAS3284.1, 2010. a, b
Hotta, D., Lonitz, K., and Healy, S.: Forward operator for polarimetric radio occultation measurements, Atmos. Meas. Tech., 17, 1075–1089, https://doi.org/10.5194/amt-17-1075-2024, 2024. a, b, c
Huang, Y., Leroy, S. S., and Anderson, J. G.: Determining Longwave Forcing and Feedback Using Infrared Spectra and GNSS Radio Occultation, J. Climate, 23, 6027–6035, https://doi.org/10.1175/2010jcli3588.1, 2010. a, b
Izakian, H., Pedrycz, W., and Jamal, I.: Fuzzy clustering of time series data using dynamic time warping distance, Eng. Appl. Artific. Intell., 39, 235–244, https://doi.org/10.1016/j.engappai.2014.12.015, 2015. a
Jakob, C. and Tselioudis, G.: Objective identification of cloud regimes in the Tropical Western Pacific, Geophys. Res. Lett., 30, 2082, https://doi.org/10.1029/2003GL018367, 2003. a
Johnston, B. R., Xie, F., and Liu, C.: The Effects of Deep Convection on Regional Temperature Structure in the Tropical Upper Troposphere and Lower Stratosphere, J. Geophys. Res.-Atmos., 123, 1585–1603, https://doi.org/10.1002/2017JD027120, 2018. a, b
Johnston, B. R., Xie, F., and Liu, C.: Relationships between Extratropical Precipitation Systems and UTLS Temperatures and Tropopause Height from GPM and GPS-RO, Atmosphere, 13, 196, https://doi.org/10.3390/atmos13020196, 2022. a, b
Kim, J. and Son, S.-W.: Tropical Cold-Point Tropopause: Climatology, Seasonal Cycle, and Intraseasonal Variability Derived from COSMIC GPS Radio Occultation Measurements, J. Climate, 25, 5343–5360, https://doi.org/10.1175/jcli-d-11-00554.1, 2012. a
Kliore, A., Cain, D. L., Fjeldbo, G., Seidel, B. L., and Rasool, S. I.: Preliminary Results on the Atmospheres of Io and Jupiter from the Pioneer 10 S-Band Occultation Experiment, Science, 183, 323–324, https://doi.org/10.1126/science.183.4122.323, 1974. a
Kuo, Y.-H., Sokolovskiy, S., Anthes, R., and Vandenberghe, F.: Assimilation of GPS Radio Occultation Data for Numerical Weather Prediction, Terrestrial, Atmos. Ocean. Sci., 11, 157–186, https://doi.org/10.3319/TAO.2000.11.1.157(COSMIC), 2001. a, b
Kursinski, E. R., Hajj, G. A., Schofield, J. T., Linfield, R. P., and Hardy, K. R.: Observing Earth's atmosphere with radio occultation measurements using the Global Positioning System, J. Geophys. Res.-Atmos., 102, 23429–23465, https://doi.org/10.1029/97JD01569, 1997. a, b
Lackner, B. C., Steiner, A. K., Hegerl, G. C., and Kirchengast, G.: Atmospheric Climate Change Detection by Radio Occultation Data Using a Fingerprinting Method, J. Climate, 24, 5275–5291, https://doi.org/10.1175/2011jcli3966.1, 2011. a
Mascio, J., Leroy, S. S., d'Entremont, R. P., Connor, T., and Kursinski, E. R.: Using Radio Occultation to Detect Clouds in the Middle and Upper Troposphere, J. Atmos. Ocean. Technol., 38, 1847–1858, https://doi.org/10.1175/JTECH-D-21-0022.1, 2021. a
Müller, M.: Dynamic Time Warping, Information Retrieval for Music and Motion, Springer Berlin Heidelberg, Berlin, Heidelberg, 69–84, https://doi.org/10.1007/978-3-540-74048-3_4, 2007. a, b
Muller, C. J., Back, L. E., O'Gorman, P. A., and Emanuel, K. A.: A model for the relationship between tropical precipitation and column water vapor, Geophys. Res. Lett., 36, L16804, https://doi.org/10.1029/2009GL039667, 2009. a
NASA: CloudSat, https://eospso.nasa.gov/missions/cloudsat (last access: 28 April 2024), 2024. a
NASA: Precipitation Processing System (PPS), NASA, https://pps.gsfc.nasa.gov/ (last access: 29 December 2023), 2025. a
Nidzgorska-Lencewicz, J. and Czarnecka, M.: Thermal Inversion and Particulate Matter Concentration in Wrocław in Winter Season, Atmosphere, 11, 1351, https://doi.org/10.3390/atmos11121351, 2020. a
Nishida, M., Shimizu, A., Tsuda, T., Rocken, C., and Ware, R. H.: Seasonal and Longitudinal Variations in the Tropical Tropopause Observed with the GPS Occultation Technique (GPS/MET), J. Meteorol. Soc. JPN II, 78, 691–700, https://doi.org/10.2151/jmsj1965.78.6_691, 2000. a
Padullés, R., Ao, C. O., Turk, F. J., de la Torre Juárez, M., Iijima, B., Wang, K. N., and Cardellach, E.: PAZ calibrated polarimetric products, NASA [data set], https://genesis.jpl.nasa.gov/ftp/paz_pol/ (last access: 29 December 2023), 2021. a
Peng, G., de la Torre-Juárez, M., Farley, R., and Wessel, J.: Impacts of upper tropospheric clouds on GPS radio refractivity, in: 2006 IEEE Aerospace Conference, 6 pp., https://doi.org/10.1109/AERO.2006.1655899, 2006. a, b
Randel, W. J., Wu, F., and Ríos, W. R.: Thermal variability of the tropical tropopause region derived from GPS/MET observations, J. Geophys. Res., 108, 4024, https://doi.org/10.1029/2002JD002595, 2003. a
Rossow, W. B., Tselioudis, G., Polak, A., and Jakob, C.: Tropical climate described as a distribution of weather states indicated by distinct mesoscale cloud property mixtures, Geophys. Res. Lett., 32, L21812, https://doi.org/10.1029/2005GL024584, 2005. a
Rousseeuw, P. J.: Silhouettes: A graphical aid to the interpretation and validation of cluster analysis, J. Comput. Appl. Mathe., 20, 53–65, https://doi.org/10.1016/0377-0427(87)90125-7, 1987. a
Ruston, B. and Healy, S.: Forecast Impact of FORMOSAT-7/COSMIC-2 GNSS Radio Occultation Measurements, Atmos. Sci. Lett., 22, e1019, https://doi.org/10.1002/asl.1019, 2021. a
Scherllin-Pirscher, B., Steiner, A. K., Anthes, R. A., Alexander, M. J., Alexander, S. P., Biondi, R., Birner, T., Kim, J., Randel, W. J., Son, S.-W., Tsuda, T., and Zeng, Z.: Tropical Temperature Variability in the UTLS: New Insights from GPS Radio Occultation Observations, J. Climate, 34, 2813–2838, https://doi.org/10.1175/jcli-d-20-0385.1, 2021. a, b
Schmidt, T., Wickert, J., Beyerle, G., and Reigber, C.: Tropical tropopause parameters derived from GPS radio occultation measurements with CHAMP, J. Geophys. Res.-Atmos., 109, D13105, https://doi.org/10.1029/2004jd004566, 2004. a, b
Smith, E. K. and Weintraub, S.: The Constants in the Equation for Atmospheric Refractive Index at Radio Frequencies, Proc. IRE, 41, 1035–1037, https://doi.org/10.1109/JRPROC.1953.274297, 1953. a
Son, S.-W., Lim, Y., Yoo, C., Hendon, H. H., and Kim, J.: Stratospheric Control of the Madden–Julian Oscillation, J. Climate, 30, 1909–1922, https://doi.org/10.1175/jcli-d-16-0620.1, 2017. a
Takamura, T., Tanaka, M., and Nakajima, T.: Effects of Atmospheric Humidity on the Refractive Index and the Size Distribution of Aerosols as Estimated from Light Scattering Measurements, J. Meteorol. Soc. JPN II, 62, 573–582, https://doi.org/10.2151/jmsj1965.62.3_573, 1984. a
Tavenard, R., Faouzi, J., Vandewiele, G., Divo, F., Androz, G., Holtz, C., Payne, M., Yurchak, R., Rußwurm, M., Kolar, K., and Woods, E.: Tslearn, A Machine Learning Toolkit for Time Series Data, J. Mach. Learn. Res., 21, 1–6, http://jmlr.org/papers/v21/20-091.html (last access: 28 April 2024), 2020. a
Tibshirani, R., Walther, G., and Hastie, T.: Estimating the Number of Clusters in a Data Set Via the Gap Statistic, J. Roy. Stat. Soc. B, 63, 411–423, https://doi.org/10.1111/1467-9868.00293, 2001. a
Tomás, S., Padullés, R., and Cardellach, E.: Separability of Systematic Effects in Polarimetric GNSS Radio Occultations for Precipitation Sensing, IEEE T. Geosci. Remote Sens., 56, 4633–4649, https://doi.org/10.1109/tgrs.2018.2831600, 2018. a
Turk, F. J., Haddad, Z. S., Kirstetter, P.-E., You, Y., and Ringerud, S. E.: An observationally based method for stratifying a priori passive microwave observations in a Bayesian-based precipitation retrieval framework, Q. J. Roy. Meteor. Soc., 144, 145–164, https://doi.org/10.1002/qj.3203, 2018. a, b
Turk, F. J., Padullés, R., Ao, C. O., Juárez, M. d. l. T., Wang, K.-N., Franklin, G. W., Lowe, S. T., Hristova-Veleva, S. M., Fetzer, E. J., Cardellach, E., Kuo, Y.-H., and Neelin, J. D.: Benefits of a Closely-Spaced Satellite Constellation of Atmospheric Polarimetric Radio Occultation Measurements, Remote Sens., 11, 2399, https://doi.org/10.3390/rs11202399, 2019. a
Turk, F. J., Padullés, R., Cardellach, E., Ao, C. O., Wang, K.-N., Morabito, D. D., de la Torre Juárez, M., Oyola, M., Hristova-Veleva, S., and Neelin, J. D.: Interpretation of the Precipitation Structure Contained in Polarimetric Radio Occultation Profiles Using Passive Microwave Satellite Observations, J. Atmos. Ocean. Technol., 38, 1727–1745, https://doi.org/10.1175/JTECH-D-21-0044.1, 2021. a, b, c, d, e, f, g
Utsumi, N., Turk, F. J., Haddad, Z. S., Kirstetter, P.-E., and Kim, H.: Evaluation of precipitation vertical profiles estimated by GPM-era satellite-based passive microwave retrievals, J. Hydrometeor., 22, 95–112, https://doi.org/10.1175/JHM-D-20-0160.1, 2020. a
von Engeln, A., Teixeira, J., Wickert, J., and Buehler, S. A.: Using CHAMP radio occultation data to determine the top altitude of the Planetary Boundary Layer, Geophys. Res. Lett., 32, L06815, https://doi.org/10.1029/2004GL022168, 2005. a
Wang, K.-N., Ao, C. O., Padullés, R., Turk, F. J., de la Torre Juárez, M., and Cardellach, E.: The Effects of Heavy Precipitation on Polarimetric Radio Occultation (PRO) Bending Angle Observations, J. Atmos. Ocean. Technol., 39, 149–161, https://doi.org/10.1175/jtech-d-21-0032.1, 2022. a, b, c
Wee, T.-K., Anthes, R. A., Hunt, D. C., Schreiner, W. S., and Kuo, Y.-H.: Atmospheric GNSS RO 1D-Var in Use at UCAR: Description and Validation, Remote Sens., 14, 5614, https://doi.org/10.3390/rs14215614, 2022. a
Wessel, P., Luis, J. F., Uieda, L., Scharroo, R., Wobbe, F., Smith, W. H. F., and Tian, D.: The Generic Mapping Tools Version 6, Geochem. Geophys. Geosyst., 20, 5556–5564, https://doi.org/10.1029/2019gc008515, 2019. a
Wilks, D. S.: Statistical methods in the atmospheric sciences, Elsevier Science Publishing, Philadelphia, PA, 4 edn., Elsevier, https://doi.org/10.1016/c2017-0-03921-6, 2019. a
Xian, T. and Fu, Y.: Characteristics of tropopause‐penetrating convection determined by TRMM and COSMIC GPS radio occultation measurements, J. Geophys. Res.-Atmos., 120, 7006–7024, https://doi.org/10.1002/2014jd022633, 2015. a
Yokoi, S., Takayabu, Y. N., Nishii, K., Nakamura, H., Endo, H., Ichikawa, H., Inoue, T., Kimoto, M., Kosaka, Y., Miyasaka, T., Oshima, K., Sato, N., Tsushima, Y., and Watanabe, M.: Application of Cluster Analysis to Climate Model Performance Metrics, J. Appl. Meteorol. Climatol., 50, 1666–1675, https://doi.org/10.1175/2011JAMC2643.1, 2011. a
Short summary
Polarimetric radio occultations (PROs) use polarized radio signals from satellites to detect moisture and precipitation in Earth's atmosphere. By applying nonlinear regression and k-means cluster analysis to over 2 years of PRO and non-PRO data, this study shows how deviations from a refractivity model relate to vertical profiles of water vapor pressure (moisture) and that differences between components of PRO signals correlate directly with vertical profiles of water path (precipitation).
Polarimetric radio occultations (PROs) use polarized radio signals from satellites to detect...