Articles | Volume 6, issue 12
Atmos. Meas. Tech., 6, 3563–3576, 2013
https://doi.org/10.5194/amt-6-3563-2013

Special issue: Tropospheric profiling (ISTP9)

Atmos. Meas. Tech., 6, 3563–3576, 2013
https://doi.org/10.5194/amt-6-3563-2013

Research article 17 Dec 2013

Research article | 17 Dec 2013

Implementation of a 3D-Var system for atmospheric profiling data assimilation into the RAMS model: initial results

S. Federico

Related authors

The impact of lightning and radar reflectivity factor data assimilation on the very short-term rainfall forecasts of RAMS@ISAC: application to two case studies in Italy
Stefano Federico, Rosa Claudia Torcasio, Elenio Avolio, Olivier Caumont, Mario Montopoli, Luca Baldini, Gianfranco Vulpiani, and Stefano Dietrich
Nat. Hazards Earth Syst. Sci., 19, 1839–1864, https://doi.org/10.5194/nhess-19-1839-2019,https://doi.org/10.5194/nhess-19-1839-2019, 2019
Short summary
Precipitable water vapour content from ESR/SKYNET sun–sky radiometers: validation against GNSS/GPS and AERONET over three different sites in Europe
Monica Campanelli, Alessandra Mascitelli, Paolo Sanò, Henri Diémoz, Victor Estellés, Stefano Federico, Anna Maria Iannarelli, Francesca Fratarcangeli, Augusto Mazzoni, Eugenio Realini, Mattia Crespi, Olivier Bock, Jose A. Martínez-Lozano, and Stefano Dietrich
Atmos. Meas. Tech., 11, 81–94, https://doi.org/10.5194/amt-11-81-2018,https://doi.org/10.5194/amt-11-81-2018, 2018
Short summary
Impact of the assimilation of lightning data on the precipitation forecast at different forecast ranges
Stefano Federico, Marco Petracca, Giulia Panegrossi, Claudio Transerici, and Stefano Dietrich
Adv. Sci. Res., 14, 187–194, https://doi.org/10.5194/asr-14-187-2017,https://doi.org/10.5194/asr-14-187-2017, 2017
Short summary
Comparison of hourly surface downwelling solar radiation estimated from MSG–SEVIRI and forecast by the RAMS model with pyranometers over Italy
Stefano Federico, Rosa Claudia Torcasio, Paolo Sanò, Daniele Casella, Monica Campanelli, Jan Fokke Meirink, Ping Wang, Stefania Vergari, Henri Diémoz, and Stefano Dietrich
Atmos. Meas. Tech., 10, 2337–2352, https://doi.org/10.5194/amt-10-2337-2017,https://doi.org/10.5194/amt-10-2337-2017, 2017
Short summary
Improvement of RAMS precipitation forecast at the short-range through lightning data assimilation
Stefano Federico, Marco Petracca, Giulia Panegrossi, and Stefano Dietrich
Nat. Hazards Earth Syst. Sci., 17, 61–76, https://doi.org/10.5194/nhess-17-61-2017,https://doi.org/10.5194/nhess-17-61-2017, 2017
Short summary

Related subject area

Subject: Others (Wind, Precipitation, Temperature, etc.) | Technique: In Situ Measurement | Topic: Data Processing and Information Retrieval
Separation of convective and stratiform precipitation using polarimetric radar data with a support vector machine method
Yadong Wang, Lin Tang, Pao-Liang Chang, and Yu-Shuang Tang
Atmos. Meas. Tech., 14, 185–197, https://doi.org/10.5194/amt-14-185-2021,https://doi.org/10.5194/amt-14-185-2021, 2021
Short summary
An approach to minimize aircraft motion bias in multi-hole probe wind measurements made by small unmanned aerial systems
Loiy Al-Ghussain and Sean C. C. Bailey
Atmos. Meas. Tech., 14, 173–184, https://doi.org/10.5194/amt-14-173-2021,https://doi.org/10.5194/amt-14-173-2021, 2021
Short summary
Interpolation uncertainty of atmospheric temperature profiles
Alessandro Fassò, Michael Sommer, and Christoph von Rohden
Atmos. Meas. Tech., 13, 6445–6458, https://doi.org/10.5194/amt-13-6445-2020,https://doi.org/10.5194/amt-13-6445-2020, 2020
Short summary
Unsupervised classification of snowflake images using a generative adversarial network and K-medoids classification
Jussi Leinonen and Alexis Berne
Atmos. Meas. Tech., 13, 2949–2964, https://doi.org/10.5194/amt-13-2949-2020,https://doi.org/10.5194/amt-13-2949-2020, 2020
Short summary
An improved post-processing technique for automatic precipitation gauge time series
Amber Ross, Craig D. Smith, and Alan Barr
Atmos. Meas. Tech., 13, 2979–2994, https://doi.org/10.5194/amt-13-2979-2020,https://doi.org/10.5194/amt-13-2979-2020, 2020
Short summary

Cited articles

Anderson, J.: An ensemble adjustment Kalman filter for data assimilation, Mon. Weather Rev., 129, 2884–2903, 2001.
Barker, D. M., Huang, W., Guo, Y.-R., and Bourgeois, A.: Athree-dimensional variational (3DVAR) data assimilation system for use with MM5. NCAR Tech. Note. NCAR/TN-453 1 STR, available from UCAR Communications, P.O. Box 3000,Boulder, CO 80307, 68 pp., 2003.
Barker, D. M., Huang, W., Guo, Y.-R., and Xiao, Q. N.: A Three-Dimensional Variational Data Assimilation System For MM5: Implementation And Initial Results, Mon. Weather Rev., 132, 897–914, 2004.
Chen, C. and Cotton, W. R.: A One-Dimensional Simulation of the Stratocumulus-Capped Mixed Layer, Bound.-Lay. Meteorol., 25, 289–321, 1983.