Articles | Volume 6, issue 2
https://doi.org/10.5194/amt-6-487-2013
https://doi.org/10.5194/amt-6-487-2013
Research article
 | 
27 Feb 2013
Research article |  | 27 Feb 2013

Fast response cavity enhanced ozone monitor

A. L. Gomez and E. P. Rosen

Related subject area

Subject: Gases | Technique: Laboratory Measurement | Topic: Instruments and Platforms
Laser-induced sublimation extraction for centimeter-resolution multi-species greenhouse gas analysis on ice cores
Lars Mächler, Daniel Baggenstos, Florian Krauss, Jochen Schmitt, Bernhard Bereiter, Remo Walther, Christoph Reinhard, Béla Tuzson, Lukas Emmenegger, and Hubertus Fischer
Atmos. Meas. Tech., 16, 355–372, https://doi.org/10.5194/amt-16-355-2023,https://doi.org/10.5194/amt-16-355-2023, 2023
Short summary
Influence of ozone and humidity on PTR-MS and GC-MS VOC measurements with and without Na2S2O3 ozone scrubber
Lisa Ernle, Monika Akima Ringsdorf, and Jonathan Williams
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2022-279,https://doi.org/10.5194/amt-2022-279, 2022
Revised manuscript accepted for AMT
Short summary
Ozone reactivity measurement of biogenic volatile organic compound emissions
Detlev Helmig, Alex Guenther, Jacques Hueber, Ryan Daly, Wei Wang, Jeong-Hoo Park, Anssi Liikanen, and Arnaud P. Praplan
Atmos. Meas. Tech., 15, 5439–5454, https://doi.org/10.5194/amt-15-5439-2022,https://doi.org/10.5194/amt-15-5439-2022, 2022
Short summary
Comparison of two photolytic calibration methods for nitrous acid
Andrew J. Lindsay and Ezra C. Wood
Atmos. Meas. Tech., 15, 5455–5464, https://doi.org/10.5194/amt-15-5455-2022,https://doi.org/10.5194/amt-15-5455-2022, 2022
Short summary
Measurement of enantiomer percentages for five monoterpenes from six conifer species by cartridge-tube-based passive sampling adsorption–thermal desorption (ps-ATD)
Ying Wang, Wentai Luo, Todd N. Rosenstiel, and James F. Pankow
Atmos. Meas. Tech., 15, 4651–4661, https://doi.org/10.5194/amt-15-4651-2022,https://doi.org/10.5194/amt-15-4651-2022, 2022
Short summary

Cited articles

Ball, S. M., Langridge, J. M., and Jones, R. L.: Broadband cavity enhanced absorption spectroscopy using light emitting diodes, Chem. Phys. Lett., 398, 68–74, https://doi.org/10.1016/J.Cplett.2004.08.144, 2004.
Brown, S. S., Dubé, W. P., Karamchandani, P., Yarwood, G., Peischl, J., Ryerson, T. B., Neuman, J. A., Nowak, J. B., Holloway, J. S., Washenfelder, R. A., Brock, C. A., Frost, G. J., Trainer, M., Parrish, D. D., Fehsenfeld, F. C., and Ravishankara, A. R.: Effects of NOx control and plume mixing on nighttime chemical processing of plumes from coal-fired power plants, J. Geophys. Res.-Atmos., 117, D07304, https://doi.org/10.1029/2011jd016954, 2012.
Busch, K. W., Hennequin, A., and Busch, M. A.: Introduction to Optical Cavities, in: Cavity-Ringdown Spectroscopy, ACS Symposium Series, Am. Chem. Soc., 720, 20–33, 1999.
Cullen, J. and Neale, P.: Ultraviolet radiation, ozone depletion, and marine photosynthesis, Photosynth. Res., 39, 303–320, https://doi.org/10.1007/bf00014589, 1994.
Darby, S. B., Smith, P. D., and Venables, D. S.: Cavity-enhanced absorption using an atomic line source: application to deep-UV measurements, Analyst, 137, 2318–2321, 2012.
Download