Articles | Volume 7, issue 9
https://doi.org/10.5194/amt-7-2839-2014
https://doi.org/10.5194/amt-7-2839-2014
Research article
 | 
09 Sep 2014
Research article |  | 09 Sep 2014

Remote sensing of cloud top pressure/height from SEVIRI: analysis of ten current retrieval algorithms

U. Hamann, A. Walther, B. Baum, R. Bennartz, L. Bugliaro, M. Derrien, P. N. Francis, A. Heidinger, S. Joro, A. Kniffka, H. Le Gléau, M. Lockhoff, H.-J. Lutz, J. F. Meirink, P. Minnis, R. Palikonda, R. Roebeling, A. Thoss, S. Platnick, P. Watts, and G. Wind

Related authors

Exploiting radar polarimetry for nowcasting thunderstorm hazards using deep learning
Nathalie Rombeek, Jussi Leinonen, and Ulrich Hamann
Nat. Hazards Earth Syst. Sci., 24, 133–144, https://doi.org/10.5194/nhess-24-133-2024,https://doi.org/10.5194/nhess-24-133-2024, 2024
Short summary
Nowcasting thunderstorm hazards using machine learning: the impact of data sources on performance
Jussi Leinonen, Ulrich Hamann, Urs Germann, and John R. Mecikalski
Nat. Hazards Earth Syst. Sci., 22, 577–597, https://doi.org/10.5194/nhess-22-577-2022,https://doi.org/10.5194/nhess-22-577-2022, 2022
Short summary
The libRadtran software package for radiative transfer calculations (version 2.0.1)
Claudia Emde, Robert Buras-Schnell, Arve Kylling, Bernhard Mayer, Josef Gasteiger, Ulrich Hamann, Jonas Kylling, Bettina Richter, Christian Pause, Timothy Dowling, and Luca Bugliaro
Geosci. Model Dev., 9, 1647–1672, https://doi.org/10.5194/gmd-9-1647-2016,https://doi.org/10.5194/gmd-9-1647-2016, 2016
Short summary

Related subject area

Subject: Clouds | Technique: Remote Sensing | Topic: Validation and Intercomparisons
Validating global horizontal irradiance retrievals from Meteosat SEVIRI at increased spatial resolution against a dense network of ground-based observations
Job I. Wiltink, Hartwig Deneke, Yves-Marie Saint-Drenan, Chiel C. van Heerwaarden, and Jan Fokke Meirink
Atmos. Meas. Tech., 17, 6003–6024, https://doi.org/10.5194/amt-17-6003-2024,https://doi.org/10.5194/amt-17-6003-2024, 2024
Short summary
Synergistic approach of frozen hydrometeor retrievals: considerations on radiative transfer and model uncertainties in a simulated framework
Ethel Villeneuve, Philippe Chambon, and Nadia Fourrié
Atmos. Meas. Tech., 17, 3567–3582, https://doi.org/10.5194/amt-17-3567-2024,https://doi.org/10.5194/amt-17-3567-2024, 2024
Short summary
An evaluation of microphysics in a numerical model using Doppler velocity measured by ground-based radar for application to the EarthCARE satellite
Woosub Roh, Masaki Satoh, Yuichiro Hagihara, Hiroaki Horie, Yuichi Ohno, and Takuji Kubota
Atmos. Meas. Tech., 17, 3455–3466, https://doi.org/10.5194/amt-17-3455-2024,https://doi.org/10.5194/amt-17-3455-2024, 2024
Short summary
Investigation of cirrus cloud properties in the tropical tropopause layer using high-altitude limb-scanning near-IR spectroscopy during NASA-ATTREX
Santo Fedele Colosimo, Nathaniel Brockway, Vijay Natraj, Robert Spurr, Klaus Pfeilsticker, Lisa Scalone, Max Spolaor, Sarah Woods, and Jochen Stutz
Atmos. Meas. Tech., 17, 2367–2385, https://doi.org/10.5194/amt-17-2367-2024,https://doi.org/10.5194/amt-17-2367-2024, 2024
Short summary
Comparing FY-2F/CTA products to ground-based manual total cloud cover observations in Xinjiang under complex underlying surfaces and different weather conditions
Shuai Li, Hua Zhang, Yonghang Chen, Zhili Wang, Xiangyu Li, Yuan Li, and Yuanyuan Xue
Atmos. Meas. Tech., 17, 2011–2024, https://doi.org/10.5194/amt-17-2011-2024,https://doi.org/10.5194/amt-17-2011-2024, 2024
Short summary

Cited articles

Avery, M., Winker, D., Heymsfield, A., Vaughan, M., Young, S., Hu, Y., and Trepte, C.: Cloud ice water content retrieved from the CALIOP space-based lidar, Geophys. Res. Lett., 39, L05808, https://doi.org/10.1029/2011GL050545, 2012.
Baum, B. A. and Wielicki, B. A.: Cirrus cloud retrieval using infrared sounding data: Multilevel cloud errors, J. Appl. Meteorol., 33, 107–117, 1994.
Baum, B., Heymsfield, A., Yang, P., and Bedka, S.: Bulk scattering models for the remote sensing of ice clouds. Part 1: Microphysical data and models, J. Appl. Meteorol., 44, 1885–1895, 2005.
Baum, B., Yang, P., Heymsfield, A., Platnick, S., King, M., Hu, Y.-X., and Bedka, S.: Bulk scattering models for the remote sensing of ice clouds. Part 2: Narrowband models, J. Appl. Meteorol., 44, 1896–1911, 2005.
Baum, B., Yang, P., Nasiri, S., Heidinger, A., Heymsfield, A., and Li, J.: Bulk scattering properties for the remote sensing of ice clouds. Part 3: High resolution spectral models from 100 to 3250 cm-1, J. Appl. Meteorol., 46, 423–434, 2007.
Download