Articles | Volume 8, issue 5
Research article
11 May 2015
Research article |  | 11 May 2015

Methodology for determining multilayered temperature inversions

G. J. Fochesatto

Related authors

Functional derivatives applied to error propagation of uncertainties in topography to large-aperture scintillometer-derived heat fluxes
M. A. Gruber, G. J. Fochesatto, O. K. Hartogensis, and M. Lysy
Atmos. Meas. Tech., 7, 2361–2371,,, 2014

Related subject area

Subject: Others (Wind, Precipitation, Temperature, etc.) | Technique: In Situ Measurement | Topic: Data Processing and Information Retrieval
Estimation of raindrop size distribution and rain rate with infrared surveillance camera in dark conditions
Jinwook Lee, Jongyun Byun, Jongjin Baik, Changhyun Jun, and Hyeon-Joon Kim
Atmos. Meas. Tech., 16, 707–725,,, 2023
Short summary
Estimates of the spatially complete, observational-data-driven planetary boundary layer height over the contiguous United States
Zolal Ayazpour, Shiqi Tao, Dan Li, Amy Jo Scarino, Ralph E. Kuehn, and Kang Sun
Atmos. Meas. Tech., 16, 563–580,,, 2023
Short summary
Detection of turbulence occurrences from temperature, pressure, and position measurements under superpressure balloons
Richard Wilson, Clara Pitois, Aurélien Podglajen, Albert Hertzog, Milena Corcos, and Riwal Plougonven
Atmos. Meas. Tech., 16, 311–330,,, 2023
Short summary
Inferring surface energy fluxes using drone data assimilation in large eddy simulations
Norbert Pirk, Kristoffer Aalstad, Sebastian Westermann, Astrid Vatne, Alouette van Hove, Lena Merete Tallaksen, Massimo Cassiani, and Gabriel Katul
Atmos. Meas. Tech., 15, 7293–7314,,, 2022
Short summary
Raindrop size distribution (DSD) during the passage of tropical cyclone Nivar: effect of measuring principle and wind on DSDs and retrieved rain integral and polarimetric parameters from impact and laser disdrometers
Basivi Radhakrishna
Atmos. Meas. Tech., 15, 6705–6722,,, 2022
Short summary

Cited articles

André, J. C. and Mahrt, L.: The nocturnal surface inversion and influence of clear-air radiative cooling, J. Atmos. Sci., 39, 864–878, 1982.
Beyrich, F. and Weill, A.: Some Aspects of Determining the Stable Boundary-Layer Depth from Sodar Data, Bound.-Lay. Meteorol., 63, 97–116, 1993.
Bianco, L. and Wilczak, J.: Convective boundary layer depth: improved measurement by Doppler Radar wind profiler using fuzzy logic methods, J. Atmos. Ocean. Tech., 19, 1745–1758, 2002.
Billelo, M. A.: Survey of arctic and subarctic temperature inversions. US Army Cold Regions Research & Engineering Laboratory, Hanover N. H., 36 pp., TR 161, 1966.
Bintanja, R., Graversen, R. G., and Hazeleger, W.: Arctic winter warming amplified by the thermal inversion and consequent los infrared cooling to space, Nat. Geosci., 4, 758–761,, 2011.
Short summary
Temperature inversion layers originate based on the combined forcing of local- and large-scale synoptic meteorology. A numerical procedure based on a linear interpolation function of variable length that minimizes an error function set a priori is proposed to extract thermodynamic information of the multilayered thermal structure. The method is demonstrated to detect surface-based inversion and multilayered elevated inversions present often in high-latitude atmospheres.