Articles | Volume 8, issue 5
https://doi.org/10.5194/amt-8-2051-2015
https://doi.org/10.5194/amt-8-2051-2015
Research article
 | 
11 May 2015
Research article |  | 11 May 2015

Methodology for determining multilayered temperature inversions

G. J. Fochesatto

Related authors

Functional derivatives applied to error propagation of uncertainties in topography to large-aperture scintillometer-derived heat fluxes
M. A. Gruber, G. J. Fochesatto, O. K. Hartogensis, and M. Lysy
Atmos. Meas. Tech., 7, 2361–2371, https://doi.org/10.5194/amt-7-2361-2014,https://doi.org/10.5194/amt-7-2361-2014, 2014

Related subject area

Subject: Others (Wind, Precipitation, Temperature, etc.) | Technique: In Situ Measurement | Topic: Data Processing and Information Retrieval
Number- and size-controlled rainfall regimes in the Netherlands: physical reality or statistical mirage?
Marc Schleiss
Atmos. Meas. Tech., 17, 4789–4802, https://doi.org/10.5194/amt-17-4789-2024,https://doi.org/10.5194/amt-17-4789-2024, 2024
Short summary
The Far-INfrarEd Spectrometer for Surface Emissivity (FINESSE) – Part 2: First measurements of the emissivity of water in the far-infrared
Laura Warwick, Jonathan E. Murray, and Helen Brindley
Atmos. Meas. Tech., 17, 4777–4787, https://doi.org/10.5194/amt-17-4777-2024,https://doi.org/10.5194/amt-17-4777-2024, 2024
Short summary
Hailstorm events in the Central Andes of Peru: insights from historical data and radar microphysics
Jairo M. Valdivia, José Luis Flores-Rojas, Josep J. Prado, David Guizado, Elver Villalobos-Puma, Stephany Callañaupa, and Yamina Silva-Vidal
Atmos. Meas. Tech., 17, 2295–2316, https://doi.org/10.5194/amt-17-2295-2024,https://doi.org/10.5194/amt-17-2295-2024, 2024
Short summary
Hybrid instrument network optimization for air quality monitoring
Nishant Ajnoti, Hemant Gehlot, and Sachchida Nand Tripathi
Atmos. Meas. Tech., 17, 1651–1664, https://doi.org/10.5194/amt-17-1651-2024,https://doi.org/10.5194/amt-17-1651-2024, 2024
Short summary
Role of time-averaging of eddy covariance fluxes on water use efficiency dynamics of Maize crop
Arun Rao Karimindla, Shweta Kumari, Saipriya SR, Syam Chintala, and BVN Phanindra Kambhammettu
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2023-253,https://doi.org/10.5194/amt-2023-253, 2024
Revised manuscript accepted for AMT
Short summary

Cited articles

André, J. C. and Mahrt, L.: The nocturnal surface inversion and influence of clear-air radiative cooling, J. Atmos. Sci., 39, 864–878, 1982.
Beyrich, F. and Weill, A.: Some Aspects of Determining the Stable Boundary-Layer Depth from Sodar Data, Bound.-Lay. Meteorol., 63, 97–116, 1993.
Bianco, L. and Wilczak, J.: Convective boundary layer depth: improved measurement by Doppler Radar wind profiler using fuzzy logic methods, J. Atmos. Ocean. Tech., 19, 1745–1758, 2002.
Billelo, M. A.: Survey of arctic and subarctic temperature inversions. US Army Cold Regions Research & Engineering Laboratory, Hanover N. H., 36 pp., TR 161, 1966.
Bintanja, R., Graversen, R. G., and Hazeleger, W.: Arctic winter warming amplified by the thermal inversion and consequent los infrared cooling to space, Nat. Geosci., 4, 758–761, https://doi.org/10.1038/NGEO1285, 2011.
Download
Short summary
Temperature inversion layers originate based on the combined forcing of local- and large-scale synoptic meteorology. A numerical procedure based on a linear interpolation function of variable length that minimizes an error function set a priori is proposed to extract thermodynamic information of the multilayered thermal structure. The method is demonstrated to detect surface-based inversion and multilayered elevated inversions present often in high-latitude atmospheres.