Articles | Volume 8, issue 8
Atmos. Meas. Tech., 8, 3493–3517, 2015
https://doi.org/10.5194/amt-8-3493-2015
Atmos. Meas. Tech., 8, 3493–3517, 2015
https://doi.org/10.5194/amt-8-3493-2015
Research article
26 Aug 2015
Research article | 26 Aug 2015

Performance assessment of a triple-frequency spaceborne cloud–precipitation radar concept using a global cloud-resolving model

J. Leinonen et al.

Related authors

Nowcasting thunderstorm hazards using machine learning: the impact of data sources on performance
Jussi Leinonen, Ulrich Hamann, Urs Germann, and John R. Mecikalski
Nat. Hazards Earth Syst. Sci., 22, 577–597, https://doi.org/10.5194/nhess-22-577-2022,https://doi.org/10.5194/nhess-22-577-2022, 2022
Short summary
Reconstruction of the mass and geometry of snowfall particles from multi-angle snowflake camera (MASC) images
Jussi Leinonen, Jacopo Grazioli, and Alexis Berne
Atmos. Meas. Tech., 14, 6851–6866, https://doi.org/10.5194/amt-14-6851-2021,https://doi.org/10.5194/amt-14-6851-2021, 2021
Short summary
Unsupervised classification of snowflake images using a generative adversarial network and K-medoids classification
Jussi Leinonen and Alexis Berne
Atmos. Meas. Tech., 13, 2949–2964, https://doi.org/10.5194/amt-13-2949-2020,https://doi.org/10.5194/amt-13-2949-2020, 2020
Short summary
Marine liquid cloud geometric thickness retrieved from OCO-2's oxygen A-band spectrometer
Mark Richardson, Jussi Leinonen, Heather Q. Cronk, James McDuffie, Matthew D. Lebsock, and Graeme L. Stephens
Atmos. Meas. Tech., 12, 1717–1737, https://doi.org/10.5194/amt-12-1717-2019,https://doi.org/10.5194/amt-12-1717-2019, 2019
Short summary
Retrieval of snowflake microphysical properties from multifrequency radar observations
Jussi Leinonen, Matthew D. Lebsock, Simone Tanelli, Ousmane O. Sy, Brenda Dolan, Randy J. Chase, Joseph A. Finlon, Annakaisa von Lerber, and Dmitri Moisseev
Atmos. Meas. Tech., 11, 5471–5488, https://doi.org/10.5194/amt-11-5471-2018,https://doi.org/10.5194/amt-11-5471-2018, 2018
Short summary

Related subject area

Subject: Clouds | Technique: Remote Sensing | Topic: Instruments and Platforms
3D cloud envelope and cloud development velocity from simulated CLOUD (C3IEL) stereo images
Paolo Dandini, Céline Cornet, Renaud Binet, Laetitia Fenouil, Vadim Holodovsky, Yoav Y. Schechner, Didier Ricard, and Daniel Rosenfeld
Atmos. Meas. Tech., 15, 6221–6242, https://doi.org/10.5194/amt-15-6221-2022,https://doi.org/10.5194/amt-15-6221-2022, 2022
Short summary
Passive ground-based remote sensing of radiation fog
Heather Guy, David D. Turner, Von P. Walden, Ian M. Brooks, and Ryan R. Neely
Atmos. Meas. Tech., 15, 5095–5115, https://doi.org/10.5194/amt-15-5095-2022,https://doi.org/10.5194/amt-15-5095-2022, 2022
Short summary
Locations for the best lidar view of mid-level and high clouds
Matthias Tesche and Vincent Noel
Atmos. Meas. Tech., 15, 4225–4240, https://doi.org/10.5194/amt-15-4225-2022,https://doi.org/10.5194/amt-15-4225-2022, 2022
Short summary
VELOX – a new thermal infrared imager for airborne remote sensing of cloud and surface properties
Michael Schäfer, Kevin Wolf, André Ehrlich, Christoph Hallbauer, Evelyn Jäkel, Friedhelm Jansen, Anna Elizabeth Luebke, Joshua Müller, Jakob Thoböll, Timo Röschenthaler, Bjorn Stevens, and Manfred Wendisch
Atmos. Meas. Tech., 15, 1491–1509, https://doi.org/10.5194/amt-15-1491-2022,https://doi.org/10.5194/amt-15-1491-2022, 2022
Short summary
Above-aircraft cirrus cloud and aerosol optical depth from hyperspectral irradiances measured by a total-diffuse radiometer
Matthew S. Norgren, John Wood, K. Sebastian Schmidt, Bastiaan van Diedenhoven, Snorre A. Stamnes, Luke D. Ziemba, Ewan C. Crosbie, Michael A. Shook, A. Scott Kittelman, Samuel E. LeBlanc, Stephen Broccardo, Steffen Freitag, and Jeffrey S. Reid
Atmos. Meas. Tech., 15, 1373–1394, https://doi.org/10.5194/amt-15-1373-2022,https://doi.org/10.5194/amt-15-1373-2022, 2022
Short summary

Cited articles

Battaglia, A. and Tanelli, S.: DOMUS: DOppler MUltiple-Scattering Simulator, IEEE T. Geosci. Remote, 49, 442–450, https://doi.org/10.1109/TGRS.2010.2052818, 2011.
Battaglia, A., Tanelli, S., Kobayashi, S., Zrnic, D., Hogan, R. J., and Simmer, C.: Multiple-scattering in radar systems: a review, J. Quant. Spectrosc. Radiat. Transfer, 111, 917–947, https://doi.org/10.1016/j.jqsrt.2009.11.024, 2010.
Battaglia, A., Tanelli, S., Mroz, K., and Tridon, F.: Multiple scattering in observations of the GPM dual-frequency precipitation radar: Evidence and impact on retrievals, J. Geophys. Res.-Atmos., 120, 4090–4101, https://doi.org/10.1002/2014JD022866, 2015.
Bodas-Salcedo, A., Webb, M. J., Bony, S., Chepfer, H., Dufresne, J.-L., Klein, S. A., Zhang, Y., Marchand, R., Haynes, J. M., Pincus, R., and John, V. A.: COSP: satellite simulation software for model assessment, B. Am. Meteorol. Soc., 92, 1023–1043, https://doi.org/10.1175/2011BAMS2856.1, 2011.
Fabry, F. and Szyrmer, W.: Modeling of the melting layer. Part II: Electromagnetic, J. Atmos. Sci., 56, 3593–3600, https://doi.org/10.1175/1520-0469(1999)056<3593:MOTMLP>2.0.CO;2, 1999.
Download
Short summary
Using multiple frequencies in cloud and precipitation radars enables them to be both sensitive enough to detect thin clouds and to penetrate heavy precipitation, profiling the entire vertical structure of the atmospheric component of the water cycle. Here, we evaluate the performance of a potential future three-frequency space-based radar system by simulating its observations using data from a high-resolution global atmospheric model.