Articles | Volume 8, issue 10
https://doi.org/10.5194/amt-8-4243-2015
https://doi.org/10.5194/amt-8-4243-2015
Research article
 | 
14 Oct 2015
Research article |  | 14 Oct 2015

Intercomparison of the comparative reactivity method (CRM) and pump–probe technique for measuring total OH reactivity in an urban environment

R. F. Hansen, M. Blocquet, C. Schoemaecker, T. Léonardis, N. Locoge, C. Fittschen, B. Hanoune, P. S. Stevens, V. Sinha, and S. Dusanter

Related authors

Differences in BVOC oxidation and SOA formation above and below the forest canopy
Benjamin C. Schulze, Henry W. Wallace, James H. Flynn, Barry L. Lefer, Matt H. Erickson, B. Tom Jobson, Sebastien Dusanter, Stephen M. Griffith, Robert F. Hansen, Philip S. Stevens, Timothy VanReken, and Robert J. Griffin
Atmos. Chem. Phys., 17, 1805–1828, https://doi.org/10.5194/acp-17-1805-2017,https://doi.org/10.5194/acp-17-1805-2017, 2017
Short summary
Detailed characterizations of the new Mines Douai comparative reactivity method instrument via laboratory experiments and modeling
V. Michoud, R. F. Hansen, N. Locoge, P. S. Stevens, and S. Dusanter
Atmos. Meas. Tech., 8, 3537–3553, https://doi.org/10.5194/amt-8-3537-2015,https://doi.org/10.5194/amt-8-3537-2015, 2015
Short summary
Measurements of total hydroxyl radical reactivity during CABINEX 2009 – Part 1: field measurements
R. F. Hansen, S. M. Griffith, S. Dusanter, P. S. Rickly, P. S. Stevens, S. B. Bertman, M. A. Carroll, M. H. Erickson, J. H. Flynn, N. Grossberg, B. T. Jobson, B. L. Lefer, and H. W. Wallace
Atmos. Chem. Phys., 14, 2923–2937, https://doi.org/10.5194/acp-14-2923-2014,https://doi.org/10.5194/acp-14-2923-2014, 2014

Related subject area

Subject: Gases | Technique: In Situ Measurement | Topic: Validation and Intercomparisons
Validation of formaldehyde products from three satellite retrievals (OMI SAO, OMPS-NPP SAO, and OMI BIRA) in the marine atmosphere with four seasons of Atmospheric Tomography Mission (ATom) aircraft observations
Jin Liao, Glenn M. Wolfe, Alexander E. Kotsakis, Julie M. Nicely, Jason M. St. Clair, Thomas F. Hanisco, Gonzalo González Abad, Caroline R. Nowlan, Zolal Ayazpour, Isabelle De Smedt, Eric C. Apel, and Rebecca S. Hornbrook
Atmos. Meas. Tech., 18, 1–16, https://doi.org/10.5194/amt-18-1-2025,https://doi.org/10.5194/amt-18-1-2025, 2025
Short summary
Methodology and uncertainty estimation for measurements of methane leakage in a manufactured house
Anna Karion, Michael F. Link, Rileigh Robertson, Tyler Boyle, and Dustin Poppendieck
Atmos. Meas. Tech., 17, 7065–7075, https://doi.org/10.5194/amt-17-7065-2024,https://doi.org/10.5194/amt-17-7065-2024, 2024
Short summary
Alternate materials for the capture and quantification of gaseous oxidized mercury in the atmosphere
Livia Lown, Sarrah M. Dunham-Cheatham, Seth N. Lyman, and Mae S. Gustin
Atmos. Meas. Tech., 17, 6397–6413, https://doi.org/10.5194/amt-17-6397-2024,https://doi.org/10.5194/amt-17-6397-2024, 2024
Short summary
Lower-cost eddy covariance for CO2 and H2O fluxes over grassland and agroforestry
Justus G. V. van Ramshorst, Alexander Knohl, José Ángel Callejas-Rodelas, Robert Clement, Timothy C. Hill, Lukas Siebicke, and Christian Markwitz
Atmos. Meas. Tech., 17, 6047–6071, https://doi.org/10.5194/amt-17-6047-2024,https://doi.org/10.5194/amt-17-6047-2024, 2024
Short summary
OF-CEAS laser spectroscopy to measure water isotopes in dry environments: example of application in Antarctica
Thomas Lauwers, Elise Fourré, Olivier Jossoud, Daniele Romanini, Frédéric Prié, Giordano Nitti, Mathieu Casado, Kévin Jaulin, Markus Miltner, Morgane Farradèche, Valérie Masson-Delmotte, and Amaëlle Landais
EGUsphere, https://doi.org/10.5194/egusphere-2024-2149,https://doi.org/10.5194/egusphere-2024-2149, 2024
Short summary

Cited articles

Amedro, D., Parker, A. E., Schoemaecker, C., and Fittschen, C.: Direct observation of OH radicals after 565 nm multi-photon excitation of NO2 in the presence of H2O, Chem. Phys. Lett., 513, 12–16, https://doi.org/10.1016/j.cplett.2011.07.062, 2011.
Amedro, D., Miyazaki, K., Parker, A., Schoemaecker, C., and Fittschen, C.: Atmospheric and kinetic studies of OH and HO2 by the FAGE technique, J. Environ. Sci., 24, 78–86, https://doi.org/10.1016/S1001-0742(11)60723-7, 2012.
Ashmore, M. R.: Assessing the future global impacts of ozone on vegetation, Plant Cell Environ., 28, 949–964, 2005.
Atkinson, R. and Arey, J.: Atmospheric Degradation of Volatile Organic Compounds, Chem. Rev., 103, 4605–4638, 2003.
Atkinson, R., Baulch, D. L., Cox, R. A., Crowley, J. N., Hampson, R. F., Hynes, R. G., Jenkin, M. E., Rossi, M. J., Troe, J., and IUPAC Subcommittee: Evaluated kinetic and photochemical data for atmospheric chemistry: Volume II – gas phase reactions of organic species, Atmos. Chem. Phys., 6, 3625–4055, https://doi.org/10.5194/acp-6-3625-2006, 2006.
Download
Short summary
This paper describes and presents results from a intercomparison, in an environment rich in NOx (i.e., NO+NO2), of two OH reactivity instruments: one based on the comparative reactivity method, and one based on the pump-probe method. Co-located measurements were made of both ambient air and standard mixtures. Ambient OH reactivity values measured by both instruments were found to be in good agreement for ambient NOx mixing ratios as high as 100 ppbv.