Articles | Volume 8, issue 12
https://doi.org/10.5194/amt-8-5009-2015
https://doi.org/10.5194/amt-8-5009-2015
Research article
 | 
01 Dec 2015
Research article |  | 01 Dec 2015

Intercomparison of snowfall estimates derived from the CloudSat Cloud Profiling Radar and the ground-based weather radar network over Sweden

L. Norin, A. Devasthale, T. S. L'Ecuyer, N. B. Wood, and M. Smalley

Related authors

Observations of anomalous propagation over waters near Sweden
Lars Norin
Atmos. Meas. Tech., 16, 1789–1801, https://doi.org/10.5194/amt-16-1789-2023,https://doi.org/10.5194/amt-16-1789-2023, 2023
Short summary
The sensitivity of snowfall to weather states over Sweden
Lars Norin, Abhay Devasthale, and Tristan S. L'Ecuyer
Atmos. Meas. Tech., 10, 3249–3263, https://doi.org/10.5194/amt-10-3249-2017,https://doi.org/10.5194/amt-10-3249-2017, 2017
Short summary
Wind turbine impact on operational weather radar I/Q data: characterisation and filtering
Lars Norin
Atmos. Meas. Tech., 10, 1739–1753, https://doi.org/10.5194/amt-10-1739-2017,https://doi.org/10.5194/amt-10-1739-2017, 2017
Short summary
A quantitative analysis of the impact of wind turbines on operational Doppler weather radar data
L. Norin
Atmos. Meas. Tech., 8, 593–609, https://doi.org/10.5194/amt-8-593-2015,https://doi.org/10.5194/amt-8-593-2015, 2015
Short summary
The large-scale spatio-temporal variability of precipitation over Sweden observed from the weather radar network
A. Devasthale and L. Norin
Atmos. Meas. Tech., 7, 1605–1617, https://doi.org/10.5194/amt-7-1605-2014,https://doi.org/10.5194/amt-7-1605-2014, 2014

Related subject area

Subject: Others (Wind, Precipitation, Temperature, etc.) | Technique: Remote Sensing | Topic: Validation and Intercomparisons
Turbulence kinetic energy dissipation rate estimated from a WindCube Doppler lidar and the LQ7 1.3 GHz radar wind profiler in the convective boundary layer
Hubert Luce and Masanori Yabuki
Atmos. Meas. Tech., 18, 1193–1208, https://doi.org/10.5194/amt-18-1193-2025,https://doi.org/10.5194/amt-18-1193-2025, 2025
Short summary
Comparison of temperature and wind profiles between ground-based remote sensing observations and numerical weather prediction model in complex Alpine topography: the Meiringen campaign
Alexandre Bugnard, Martine Collaud Coen, Maxime Hervo, Daniel Leuenberger, Marco Arpagaus, and Samuel Monhart
Atmos. Meas. Tech., 18, 1039–1061, https://doi.org/10.5194/amt-18-1039-2025,https://doi.org/10.5194/amt-18-1039-2025, 2025
Short summary
Cluster analysis of vertical polarimetric radio occultation profiles and corresponding liquid and ice water paths from Global Precipitation Measurement (GPM) microwave data
Jonas E. Katona, Manuel de la Torre Juárez, Terence L. Kubar, F. Joseph Turk, Kuo-Nung Wang, and Ramon Padullés
Atmos. Meas. Tech., 18, 953–970, https://doi.org/10.5194/amt-18-953-2025,https://doi.org/10.5194/amt-18-953-2025, 2025
Short summary
Enhanced quantitative precipitation estimation through the opportunistic use of Ku TV-SAT links via a dual-channel procedure
Louise Gelbart, Laurent Barthès, François Mercier-Tigrine, Aymeric Chazottes, and Cécile Mallet
Atmos. Meas. Tech., 18, 351–370, https://doi.org/10.5194/amt-18-351-2025,https://doi.org/10.5194/amt-18-351-2025, 2025
Short summary
The added value and potential of long-term radio occultation data for climatological wind field monitoring
Irena Nimac, Julia Danzer, and Gottfried Kirchengast
Atmos. Meas. Tech., 18, 265–286, https://doi.org/10.5194/amt-18-265-2025,https://doi.org/10.5194/amt-18-265-2025, 2025
Short summary

Cited articles

Battan, L. J.: Radar Observation of the Atmosphere, University of Chicago Press, Chicago, USA, 324 pp., 1973.
Bech, J., Codina, B., Lorente, J., and Bebbington, D.: The sensitivity of single polarization weather radar beam blockage correction to variability in the vertical refractivity gradient, J. Atmos. Ocean. Tech., 20, 845–855, https://doi.org/10.1175/1520-0426(2003)020<0845:TSOSPW>2.0.CO;2, 2003.
Berg, P., Norin, L., and Olsson, J.: Creation of a high resolution precipitation data set by merging gridded gauge data and radar observations for Sweden, J. Hydrol., https://doi.org/10.1016/j.jhydrol.2015.11, accepted, 2015.
Boening, C., Lebsock, M., Landerer, F., and Stephens, G.: Snowfall-driven mass change on the East Antarctic ice sheet, Geophys. Res. Lett., 39, L21501, https://doi.org/10.1029/2012GL053316, 2012.
Cao, Q., Hong, Y., Chen, S., Gourley, J. J., Zhang, J., and Kirstetter, P. E.: Snowfall detectability of NASA's CloudSat: the first cross-investigation of its 2c-snow-profile product and national multi-sensor mosaic QPE (NMQ) snowfall data, Prog. Electromagn. Res., 148, 55–61, https://doi.org/10.2528/PIER14030405, 2014.
Download
Short summary
The ability to estimate snowfall accurately is important for both weather and climate applications. In this work we have intercompared snowfall estimates from two observing systems: the space-based Cloud Profiling Radar on board NASA's CloudSat satellite and Swerad, the ground-based Swedish national weather radar network. The intercomparison shows encouraging agreement between these two observing systems despite their different sensitivities and user applications.
Share