Articles | Volume 9, issue 3
https://doi.org/10.5194/amt-9-1325-2016
https://doi.org/10.5194/amt-9-1325-2016
Research article
 | 
30 Mar 2016
Research article |  | 30 Mar 2016

Challenges associated with the sampling and analysis of organosulfur compounds in air using real-time PTR-ToF-MS and offline GC-FID

Véronique Perraud, Simone Meinardi, Donald R. Blake, and Barbara J. Finlayson-Pitts

Related authors

Secondary organic aerosol from atmospheric photooxidation of indole
Julia Montoya-Aguilera, Jeremy R. Horne, Mallory L. Hinks, Lauren T. Fleming, Véronique Perraud, Peng Lin, Alexander Laskin, Julia Laskin, Donald Dabdub, and Sergey A. Nizkorodov
Atmos. Chem. Phys., 17, 11605–11621, https://doi.org/10.5194/acp-17-11605-2017,https://doi.org/10.5194/acp-17-11605-2017, 2017
Short summary
New insights into atmospherically relevant reaction systems using direct analysis in real-time mass spectrometry (DART-MS)
Yue Zhao, Michelle C. Fairhurst, Lisa M. Wingen, Véronique Perraud, Michael J. Ezell, and Barbara J. Finlayson-Pitts
Atmos. Meas. Tech., 10, 1373–1386, https://doi.org/10.5194/amt-10-1373-2017,https://doi.org/10.5194/amt-10-1373-2017, 2017
Short summary
Phase, composition, and growth mechanism for secondary organic aerosol from the ozonolysis of α-cedrene
Yue Zhao, Lisa M. Wingen, Véronique Perraud, and Barbara J. Finlayson-Pitts
Atmos. Chem. Phys., 16, 3245–3264, https://doi.org/10.5194/acp-16-3245-2016,https://doi.org/10.5194/acp-16-3245-2016, 2016
Short summary
Measurement of gas-phase ammonia and amines in air by collection onto an ion exchange resin and analysis by ion chromatography
M. L. Dawson, V. Perraud, A. Gomez, K. D. Arquero, M. J. Ezell, and B. J. Finlayson-Pitts
Atmos. Meas. Tech., 7, 2733–2744, https://doi.org/10.5194/amt-7-2733-2014,https://doi.org/10.5194/amt-7-2733-2014, 2014

Related subject area

Subject: Gases | Technique: Laboratory Measurement | Topic: Validation and Intercomparisons
Controlled-release testing of the static chamber methodology for direct measurements of methane emissions
James P. Williams, Khalil El Hachem, and Mary Kang
Atmos. Meas. Tech., 16, 3421–3435, https://doi.org/10.5194/amt-16-3421-2023,https://doi.org/10.5194/amt-16-3421-2023, 2023
Short summary
Comparison of temperature dependent calibration methods of an instrument to measure OH and HO2 radicals using laser-induced fluorescence spectroscopy
Frank A. F. Winiberg, William J. Warman, Charlotte A. Brumby, Graham Boustead, Iustinian G. Bejan, Thomas H. Speak, Dwayne E. Heard, Daniel Stone, and Paul W. Seakins
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2023-123,https://doi.org/10.5194/amt-2023-123, 2023
Revised manuscript accepted for AMT
Short summary
Development of an International System of Units (SI)-traceable transmission curve reference material to improve the quantitation and comparability of proton-transfer-reaction mass-spectrometry measurements
David R. Worton, Sergi Moreno, Kieran O'Daly, and Rupert Holzinger
Atmos. Meas. Tech., 16, 1061–1072, https://doi.org/10.5194/amt-16-1061-2023,https://doi.org/10.5194/amt-16-1061-2023, 2023
Short summary
Improvement of online monitoring technology based on the Berthelot reaction and long path absorption photometer for the measurement of ambient NH3: Field applications in low-concentration environments
Shasha Tian, Kexin Zu, Huabin Dong, Limin Zeng, Keding Lu, and Qi Chen
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2023-33,https://doi.org/10.5194/amt-2023-33, 2023
Revised manuscript accepted for AMT
Short summary
Reactive uptake coefficients for multiphase reactions determined by a dynamic chamber system
Guo Li, Hang Su, Meng Li, Uwe Kuhn, Guangjie Zheng, Lei Han, Fengxia Bao, Ulrich Pöschl, and Yafang Cheng
Atmos. Meas. Tech., 15, 6433–6446, https://doi.org/10.5194/amt-15-6433-2022,https://doi.org/10.5194/amt-15-6433-2022, 2022
Short summary

Cited articles

Andersen, K. B., Hansen, M. J., and Feilberg, A.: Minimisation of artefact formation of dimethyl disulphide during sampling and analysis of methanethiol in air using solid sorbent materials, J. Chromatogr. A, 1245, 24–31, 2012.
Andreae, M. O.: Ocean-Atmosphere interactions in the global biogeochemical sulfur cycle, Mar. Chem., 30, 1–29, 1990.
Andreae, T. W., Andreae, M. O., Bingemer, H. G., and Leck, C.: Measurements of dimethyl sulfide and H2S over the western north Atlantic and the tropical Atlantic, J. Geophys. Res., 98, 23389–23396, 1993.
Aneja, V. P.: Natural sulfur emissions into the atmosphere, J. Air Waste Manage., 40, 469–476, 1990.
Download
Short summary
Gas phase organosulfur compounds in air serve as precursors of particles which impact human health, visibility, and climate. We compare here two different approaches to measuring these compounds, one an online mass spectrometry technique and the other canister sampling followed by offline analysis by gas chromatography. We show that each approach has its own advantages and limitations in measuring these compounds in complex mixtures, including some artifacts due to reactions on surfaces.