Articles | Volume 9, issue 3
https://doi.org/10.5194/amt-9-1325-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/amt-9-1325-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Challenges associated with the sampling and analysis of organosulfur compounds in air using real-time PTR-ToF-MS and offline GC-FID
Véronique Perraud
Department of Chemistry, University of California, Irvine, CA 92697, USA
Simone Meinardi
Department of Chemistry, University of California, Irvine, CA 92697, USA
Donald R. Blake
CORRESPONDING AUTHOR
Department of Chemistry, University of California, Irvine, CA 92697, USA
Barbara J. Finlayson-Pitts
CORRESPONDING AUTHOR
Department of Chemistry, University of California, Irvine, CA 92697, USA
Related authors
Julia Montoya-Aguilera, Jeremy R. Horne, Mallory L. Hinks, Lauren T. Fleming, Véronique Perraud, Peng Lin, Alexander Laskin, Julia Laskin, Donald Dabdub, and Sergey A. Nizkorodov
Atmos. Chem. Phys., 17, 11605–11621, https://doi.org/10.5194/acp-17-11605-2017, https://doi.org/10.5194/acp-17-11605-2017, 2017
Short summary
Short summary
Various plant species emit a chemical compound called indole under stressed conditions or during flowering events. Our experiments show that indole can be oxidized in the atmosphere to produce a brownish haze containing well-known indole-derived dyes, such as indigo dye. An airshed model that includes indole chemistry shows that indole aerosol makes a significant contribution to the total aerosol burden and to visibility.
Yue Zhao, Michelle C. Fairhurst, Lisa M. Wingen, Véronique Perraud, Michael J. Ezell, and Barbara J. Finlayson-Pitts
Atmos. Meas. Tech., 10, 1373–1386, https://doi.org/10.5194/amt-10-1373-2017, https://doi.org/10.5194/amt-10-1373-2017, 2017
Short summary
Short summary
Two model systems are studied: dicarboxylic acid particles with gaseous amines and α-cedrene ozonolysis particles. Measurements by direct analysis in real-time mass spectrometry and high-resolution time-of-flight aerosol mass spectrometry
show that the reaction of the amines with the acid particles is restricted to the surface layer, with an odd–even alternating pattern. Furthermore, in the α-cedrene study, DART-MS is able to differentiate isomers based on their volatility.
Yue Zhao, Lisa M. Wingen, Véronique Perraud, and Barbara J. Finlayson-Pitts
Atmos. Chem. Phys., 16, 3245–3264, https://doi.org/10.5194/acp-16-3245-2016, https://doi.org/10.5194/acp-16-3245-2016, 2016
Short summary
Short summary
A significant fraction of airborne particles, which have significant impacts on human health, visibility, and climate, are formed from the oxidation of gaseous precursors to generate low-volatility products. We show here that a sesquiterpene, α-cedrene, efficiently forms high-viscosity semisolid particles with complex composition via mechanisms that involve the highly reactive Criegee intermediate and that high molecular weight products play an important role in new particle formation.
M. L. Dawson, V. Perraud, A. Gomez, K. D. Arquero, M. J. Ezell, and B. J. Finlayson-Pitts
Atmos. Meas. Tech., 7, 2733–2744, https://doi.org/10.5194/amt-7-2733-2014, https://doi.org/10.5194/amt-7-2733-2014, 2014
Benjamin A. Nault, Katherine R. Travis, James H. Crawford, Donald R. Blake, Pedro Campuzano-Jost, Ronald C. Cohen, Joshua P. DiGangi, Glenn S. Diskin, Samuel R. Hall, L. Gregory Huey, Jose L. Jimenez, Kyung-Eun Min, Young Ro Lee, Isobel J. Simpson, Kirk Ullmann, and Armin Wisthaler
Atmos. Chem. Phys., 24, 9573–9595, https://doi.org/10.5194/acp-24-9573-2024, https://doi.org/10.5194/acp-24-9573-2024, 2024
Short summary
Short summary
Ozone (O3) is a pollutant formed from the reactions of gases emitted from various sources. In urban areas, the density of human activities can increase the O3 formation rate (P(O3)), thus impacting air quality and health. Observations collected over Seoul, South Korea, are used to constrain P(O3). A high local P(O3) was found; however, local P(O3) was partly reduced due to compounds typically ignored. These observations also provide constraints for unmeasured compounds that will impact P(O3).
Katherine R. Travis, Benjamin A. Nault, James H. Crawford, Kelvin H. Bates, Donald R. Blake, Ronald C. Cohen, Alan Fried, Samuel R. Hall, L. Gregory Huey, Young Ro Lee, Simone Meinardi, Kyung-Eun Min, Isobel J. Simpson, and Kirk Ullman
Atmos. Chem. Phys., 24, 9555–9572, https://doi.org/10.5194/acp-24-9555-2024, https://doi.org/10.5194/acp-24-9555-2024, 2024
Short summary
Short summary
Human activities result in the emission of volatile organic compounds (VOCs) that contribute to air pollution. Detailed VOC measurements were taken during a field study in South Korea. When compared to VOC inventories, large discrepancies showed underestimates from chemical products, liquefied petroleum gas, and long-range transport. Improved emissions and chemistry of these VOCs better described urban pollution. The new chemical scheme is relevant to urban areas and other VOC sources.
Marielle Saunois, Adrien Martinez, Benjamin Poulter, Zhen Zhang, Peter Raymond, Pierre Regnier, Joseph G. Canadell, Robert B. Jackson, Prabir K. Patra, Philippe Bousquet, Philippe Ciais, Edward J. Dlugokencky, Xin Lan, George H. Allen, David Bastviken, David J. Beerling, Dmitry A. Belikov, Donald R. Blake, Simona Castaldi, Monica Crippa, Bridget R. Deemer, Fraser Dennison, Giuseppe Etiope, Nicola Gedney, Lena Höglund-Isaksson, Meredith A. Holgerson, Peter O. Hopcroft, Gustaf Hugelius, Akihito Ito, Atul K. Jain, Rajesh Janardanan, Matthew S. Johnson, Thomas Kleinen, Paul Krummel, Ronny Lauerwald, Tingting Li, Xiangyu Liu, Kyle C. McDonald, Joe R. Melton, Jens Mühle, Jurek Müller, Fabiola Murguia-Flores, Yosuke Niwa, Sergio Noce, Shufen Pan, Robert J. Parker, Changhui Peng, Michel Ramonet, William J. Riley, Gerard Rocher-Ros, Judith A. Rosentreter, Motoki Sasakawa, Arjo Segers, Steven J. Smith, Emily H. Stanley, Joel Thanwerdas, Hanquin Tian, Aki Tsuruta, Francesco N. Tubiello, Thomas S. Weber, Guido van der Werf, Doug E. Worthy, Yi Xi, Yukio Yoshida, Wenxin Zhang, Bo Zheng, Qing Zhu, Qiuan Zhu, and Qianlai Zhuang
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-115, https://doi.org/10.5194/essd-2024-115, 2024
Preprint under review for ESSD
Short summary
Short summary
Methane (CH4) is the second most important human-influenced greenhouse gas in terms of climate forcing after carbon dioxide (CO2). A consortium of multi-disciplinary scientists synthesize and update the budget of the sources and sinks of CH4. This edition benefits from important progresses in estimating emissions from lakes and ponds, reservoirs, and streams and rivers. For the 2010s decade, global CH4 emissions are estimated at 575 Tg CH4 yr-1, including ~65 % from anthropogenic sources.
Gregory P. Schill, Karl D. Froyd, Daniel M. Murphy, Christina J. Williamson, Charles Brock, Tomás Sherwen, Mat J. Evans, Eric A. Ray, Eric C. Apel, Rebecca S. Hornbrook, Alan J. Hills, Jeff Peischl, Tomas B. Ryerson, Chelsea R. Thompson, Ilann Bourgeois, Donald R. Blake, Joshua P. DiGangi, and Glenn S. Diskin
EGUsphere, https://doi.org/10.5194/egusphere-2024-1399, https://doi.org/10.5194/egusphere-2024-1399, 2024
Short summary
Short summary
Using single-particle mass spectrometry, we show that trace concentrations of bromine and iodine are ubiquitous in remote tropospheric aerosol, and suggest that aerosols are an important part of the global reactive iodine budget. Comparisons to a global climate model with detailed iodine chemistry are favorable in the background atmosphere; however, the model cannot replicate our measurements near the ocean surface, in biomass burning plumes, and in the stratosphere.
James M. Roberts, Siyuan Wang, Patrick R. Veres, J. Andrew Neuman, Michael A. Robinson, Ilann Bourgeois, Jeff Peischl, Thomas B. Ryerson, Chelsea R. Thompson, Hannah M. Allen, John D. Crounse, Paul O. Wennberg, Samuel R. Hall, Kirk Ullmann, Simone Meinardi, Isobel J. Simpson, and Donald Blake
Atmos. Chem. Phys., 24, 3421–3443, https://doi.org/10.5194/acp-24-3421-2024, https://doi.org/10.5194/acp-24-3421-2024, 2024
Short summary
Short summary
We measured cyanogen bromide (BrCN) in the troposphere for the first time. BrCN is a product of the same active bromine chemistry that destroys ozone and removes mercury in polar surface environments and is a previously unrecognized sink for active Br compounds. BrCN has an apparent lifetime against heterogeneous loss in the range 1–10 d, so it serves as a cumulative marker of Br-radical chemistry. Accounting for BrCN chemistry is an important part of understanding polar Br cycling.
Kyoung-Min Kim, Si-Wan Kim, Seunghwan Seo, Donald R. Blake, Seogju Cho, James H. Crawford, Louisa K. Emmons, Alan Fried, Jay R. Herman, Jinkyu Hong, Jinsang Jung, Gabriele G. Pfister, Andrew J. Weinheimer, Jung-Hun Woo, and Qiang Zhang
Geosci. Model Dev., 17, 1931–1955, https://doi.org/10.5194/gmd-17-1931-2024, https://doi.org/10.5194/gmd-17-1931-2024, 2024
Short summary
Short summary
Three emission inventories were evaluated for East Asia using data acquired during a field campaign in 2016. The inventories successfully reproduced the daily variations of ozone and nitrogen dioxide. However, the spatial distributions of model ozone did not fully agree with the observations. Additionally, all simulations underestimated carbon monoxide and volatile organic compound (VOC) levels. Increasing VOC emissions over South Korea resulted in improved ozone simulations.
Huisheng Bian, Mian Chin, Peter R. Colarco, Eric C. Apel, Donald R. Blake, Karl Froyd, Rebecca S. Hornbrook, Jose Jimenez, Pedro Campuzano Jost, Michael Lawler, Mingxu Liu, Marianne Tronstad Lund, Hitoshi Matsui, Benjamin A. Nault, Joyce E. Penner, Andrew W. Rollins, Gregory Schill, Ragnhild B. Skeie, Hailong Wang, Lu Xu, Kai Zhang, and Jialei Zhu
Atmos. Chem. Phys., 24, 1717–1741, https://doi.org/10.5194/acp-24-1717-2024, https://doi.org/10.5194/acp-24-1717-2024, 2024
Short summary
Short summary
This work studies sulfur in the remote troposphere at global and seasonal scales using aircraft measurements and multi-model simulations. The goal is to understand the sulfur cycle over remote oceans, spread of model simulations, and observation–model discrepancies. Such an understanding and comparison with real observations are crucial to narrow down the uncertainties in model sulfur simulations and improve understanding of the sulfur cycle in atmospheric air quality, climate, and ecosystems.
Matthew M. Coggon, Chelsea E. Stockwell, Megan S. Claflin, Eva Y. Pfannerstill, Lu Xu, Jessica B. Gilman, Julia Marcantonio, Cong Cao, Kelvin Bates, Georgios I. Gkatzelis, Aaron Lamplugh, Erin F. Katz, Caleb Arata, Eric C. Apel, Rebecca S. Hornbrook, Felix Piel, Francesca Majluf, Donald R. Blake, Armin Wisthaler, Manjula Canagaratna, Brian M. Lerner, Allen H. Goldstein, John E. Mak, and Carsten Warneke
Atmos. Meas. Tech., 17, 801–825, https://doi.org/10.5194/amt-17-801-2024, https://doi.org/10.5194/amt-17-801-2024, 2024
Short summary
Short summary
Mass spectrometry is a tool commonly used to measure air pollutants. This study evaluates measurement artifacts produced in the proton-transfer-reaction mass spectrometer. We provide methods to correct these biases and better measure compounds that degrade air quality.
Georgios I. Gkatzelis, Matthew M. Coggon, Chelsea E. Stockwell, Rebecca S. Hornbrook, Hannah Allen, Eric C. Apel, Megan M. Bela, Donald R. Blake, Ilann Bourgeois, Steven S. Brown, Pedro Campuzano-Jost, Jason M. St. Clair, James H. Crawford, John D. Crounse, Douglas A. Day, Joshua P. DiGangi, Glenn S. Diskin, Alan Fried, Jessica B. Gilman, Hongyu Guo, Johnathan W. Hair, Hannah S. Halliday, Thomas F. Hanisco, Reem Hannun, Alan Hills, L. Gregory Huey, Jose L. Jimenez, Joseph M. Katich, Aaron Lamplugh, Young Ro Lee, Jin Liao, Jakob Lindaas, Stuart A. McKeen, Tomas Mikoviny, Benjamin A. Nault, J. Andrew Neuman, John B. Nowak, Demetrios Pagonis, Jeff Peischl, Anne E. Perring, Felix Piel, Pamela S. Rickly, Michael A. Robinson, Andrew W. Rollins, Thomas B. Ryerson, Melinda K. Schueneman, Rebecca H. Schwantes, Joshua P. Schwarz, Kanako Sekimoto, Vanessa Selimovic, Taylor Shingler, David J. Tanner, Laura Tomsche, Krystal T. Vasquez, Patrick R. Veres, Rebecca Washenfelder, Petter Weibring, Paul O. Wennberg, Armin Wisthaler, Glenn M. Wolfe, Caroline C. Womack, Lu Xu, Katherine Ball, Robert J. Yokelson, and Carsten Warneke
Atmos. Chem. Phys., 24, 929–956, https://doi.org/10.5194/acp-24-929-2024, https://doi.org/10.5194/acp-24-929-2024, 2024
Short summary
Short summary
This study reports emissions of gases and particles from wildfires. These emissions are related to chemical proxies that can be measured by satellite and incorporated into models to improve predictions of wildfire impacts on air quality and climate.
Amir H. Souri, Matthew S. Johnson, Glenn M. Wolfe, James H. Crawford, Alan Fried, Armin Wisthaler, William H. Brune, Donald R. Blake, Andrew J. Weinheimer, Tijl Verhoelst, Steven Compernolle, Gaia Pinardi, Corinne Vigouroux, Bavo Langerock, Sungyeon Choi, Lok Lamsal, Lei Zhu, Shuai Sun, Ronald C. Cohen, Kyung-Eun Min, Changmin Cho, Sajeev Philip, Xiong Liu, and Kelly Chance
Atmos. Chem. Phys., 23, 1963–1986, https://doi.org/10.5194/acp-23-1963-2023, https://doi.org/10.5194/acp-23-1963-2023, 2023
Short summary
Short summary
We have rigorously characterized different sources of error in satellite-based HCHO / NO2 tropospheric columns, a widely used metric for diagnosing near-surface ozone sensitivity. Specifically, the errors were categorized/quantified into (i) an inherent chemistry error, (ii) the decoupled relationship between columns and the near-surface concentration, (iii) the spatial representativeness error of ground satellite pixels, and (iv) the satellite retrieval errors.
Hao Guo, Clare M. Flynn, Michael J. Prather, Sarah A. Strode, Stephen D. Steenrod, Louisa Emmons, Forrest Lacey, Jean-Francois Lamarque, Arlene M. Fiore, Gus Correa, Lee T. Murray, Glenn M. Wolfe, Jason M. St. Clair, Michelle Kim, John Crounse, Glenn Diskin, Joshua DiGangi, Bruce C. Daube, Roisin Commane, Kathryn McKain, Jeff Peischl, Thomas B. Ryerson, Chelsea Thompson, Thomas F. Hanisco, Donald Blake, Nicola J. Blake, Eric C. Apel, Rebecca S. Hornbrook, James W. Elkins, Eric J. Hintsa, Fred L. Moore, and Steven C. Wofsy
Atmos. Chem. Phys., 23, 99–117, https://doi.org/10.5194/acp-23-99-2023, https://doi.org/10.5194/acp-23-99-2023, 2023
Short summary
Short summary
We have prepared a unique and unusual result from the recent ATom aircraft mission: a measurement-based derivation of the production and loss rates of ozone and methane over the ocean basins. These are the key products of chemistry models used in assessments but have thus far lacked observational metrics. It also shows the scales of variability of atmospheric chemical rates and provides a major challenge to the atmospheric models.
Markus Jesswein, Rafael P. Fernandez, Lucas Berná, Alfonso Saiz-Lopez, Jens-Uwe Grooß, Ryan Hossaini, Eric C. Apel, Rebecca S. Hornbrook, Elliot L. Atlas, Donald R. Blake, Stephen Montzka, Timo Keber, Tanja Schuck, Thomas Wagenhäuser, and Andreas Engel
Atmos. Chem. Phys., 22, 15049–15070, https://doi.org/10.5194/acp-22-15049-2022, https://doi.org/10.5194/acp-22-15049-2022, 2022
Short summary
Short summary
This study presents the global and seasonal distribution of the two major brominated short-lived substances CH2Br2 and CHBr3 in the upper troposphere and lower stratosphere based on observations from several aircraft campaigns. They show similar seasonality for both hemispheres, except in the respective hemispheric autumn lower stratosphere. A comparison with the TOMCAT and CAM-Chem models shows good agreement in the annual mean but larger differences in the seasonal consideration.
Youhua Tang, Patrick C. Campbell, Pius Lee, Rick Saylor, Fanglin Yang, Barry Baker, Daniel Tong, Ariel Stein, Jianping Huang, Ho-Chun Huang, Li Pan, Jeff McQueen, Ivanka Stajner, Jose Tirado-Delgado, Youngsun Jung, Melissa Yang, Ilann Bourgeois, Jeff Peischl, Tom Ryerson, Donald Blake, Joshua Schwarz, Jose-Luis Jimenez, James Crawford, Glenn Diskin, Richard Moore, Johnathan Hair, Greg Huey, Andrew Rollins, Jack Dibb, and Xiaoyang Zhang
Geosci. Model Dev., 15, 7977–7999, https://doi.org/10.5194/gmd-15-7977-2022, https://doi.org/10.5194/gmd-15-7977-2022, 2022
Short summary
Short summary
This paper compares two meteorological datasets for driving a regional air quality model: a regional meteorological model using WRF (WRF-CMAQ) and direct interpolation from an operational global model (GFS-CMAQ). In the comparison with surface measurements and aircraft data in summer 2019, these two methods show mixed performance depending on the corresponding meteorological settings. Direct interpolation is found to be a viable method to drive air quality models.
Therese S. Carter, Colette L. Heald, Jesse H. Kroll, Eric C. Apel, Donald Blake, Matthew Coggon, Achim Edtbauer, Georgios Gkatzelis, Rebecca S. Hornbrook, Jeff Peischl, Eva Y. Pfannerstill, Felix Piel, Nina G. Reijrink, Akima Ringsdorf, Carsten Warneke, Jonathan Williams, Armin Wisthaler, and Lu Xu
Atmos. Chem. Phys., 22, 12093–12111, https://doi.org/10.5194/acp-22-12093-2022, https://doi.org/10.5194/acp-22-12093-2022, 2022
Short summary
Short summary
Fires emit many gases which can contribute to smog and air pollution. However, the amount and properties of these chemicals are not well understood, so this work updates and expands their representation in a global atmospheric model, including by adding new chemicals. We confirm that this updated representation generally matches measurements taken in several fire regions. We then show that fires provide ~15 % of atmospheric reactivity globally and more than 75 % over fire source regions.
Shang Liu, Barbara Barletta, Rebecca S. Hornbrook, Alan Fried, Jeff Peischl, Simone Meinardi, Matthew Coggon, Aaron Lamplugh, Jessica B. Gilman, Georgios I. Gkatzelis, Carsten Warneke, Eric C. Apel, Alan J. Hills, Ilann Bourgeois, James Walega, Petter Weibring, Dirk Richter, Toshihiro Kuwayama, Michael FitzGibbon, and Donald Blake
Atmos. Chem. Phys., 22, 10937–10954, https://doi.org/10.5194/acp-22-10937-2022, https://doi.org/10.5194/acp-22-10937-2022, 2022
Short summary
Short summary
California’s ozone persistently exceeds the air quality standards. We studied the spatial distribution of volatile organic compounds (VOCs) that produce ozone over the most polluted regions in California using aircraft measurements. We find that the oxygenated VOCs have the highest ozone formation potential. Spatially, biogenic VOCs are important during high ozone episodes in the South Coast Air Basin, while dairy emissions may be critical for ozone production in San Joaquin Valley.
Robert J. Yokelson, Bambang H. Saharjo, Chelsea E. Stockwell, Erianto I. Putra, Thilina Jayarathne, Acep Akbar, Israr Albar, Donald R. Blake, Laura L. B. Graham, Agus Kurniawan, Simone Meinardi, Diah Ningrum, Ati D. Nurhayati, Asmadi Saad, Niken Sakuntaladewi, Eko Setianto, Isobel J. Simpson, Elizabeth A. Stone, Sigit Sutikno, Andri Thomas, Kevin C. Ryan, and Mark A. Cochrane
Atmos. Chem. Phys., 22, 10173–10194, https://doi.org/10.5194/acp-22-10173-2022, https://doi.org/10.5194/acp-22-10173-2022, 2022
Short summary
Short summary
Fire plus non-fire GHG emissions associated with draining peatlands are the largest per area of any land use change considered by the IPCC. To characterize average and variability for tropical peat fire emissions, highly mobile smoke sampling teams were deployed across four Indonesian provinces to explore an extended interannual, climatic, and spatial range. Large adjustments to IPCC-recommended emissions are suggested. Lab data bolster an extensive emissions database for tropical peat fires.
Katherine R. Travis, James H. Crawford, Gao Chen, Carolyn E. Jordan, Benjamin A. Nault, Hwajin Kim, Jose L. Jimenez, Pedro Campuzano-Jost, Jack E. Dibb, Jung-Hun Woo, Younha Kim, Shixian Zhai, Xuan Wang, Erin E. McDuffie, Gan Luo, Fangqun Yu, Saewung Kim, Isobel J. Simpson, Donald R. Blake, Limseok Chang, and Michelle J. Kim
Atmos. Chem. Phys., 22, 7933–7958, https://doi.org/10.5194/acp-22-7933-2022, https://doi.org/10.5194/acp-22-7933-2022, 2022
Short summary
Short summary
The 2016 Korea–United States Air Quality (KORUS-AQ) field campaign provided a unique set of observations to improve our understanding of PM2.5 pollution in South Korea. Models typically have errors in simulating PM2.5 in this region, which is of concern for the development of control measures. We use KORUS-AQ observations to improve our understanding of the mechanisms driving PM2.5 and the implications of model errors for determining PM2.5 that is attributable to local or foreign sources.
Tianlang Zhao, Jingqiu Mao, William R. Simpson, Isabelle De Smedt, Lei Zhu, Thomas F. Hanisco, Glenn M. Wolfe, Jason M. St. Clair, Gonzalo González Abad, Caroline R. Nowlan, Barbara Barletta, Simone Meinardi, Donald R. Blake, Eric C. Apel, and Rebecca S. Hornbrook
Atmos. Chem. Phys., 22, 7163–7178, https://doi.org/10.5194/acp-22-7163-2022, https://doi.org/10.5194/acp-22-7163-2022, 2022
Short summary
Short summary
Monitoring formaldehyde (HCHO) can help us understand Arctic vegetation change. Here, we compare satellite data and model and show that Alaska summertime HCHO is largely dominated by a background from methane oxidation during mild wildfire years and is dominated by wildfire (largely from direct emission of fire) during strong fire years. Consequently, it is challenging to use satellite HCHO to study vegetation change in the Arctic region.
Glenn M. Wolfe, Thomas F. Hanisco, Heather L. Arkinson, Donald R. Blake, Armin Wisthaler, Tomas Mikoviny, Thomas B. Ryerson, Ilana Pollack, Jeff Peischl, Paul O. Wennberg, John D. Crounse, Jason M. St. Clair, Alex Teng, L. Gregory Huey, Xiaoxi Liu, Alan Fried, Petter Weibring, Dirk Richter, James Walega, Samuel R. Hall, Kirk Ullmann, Jose L. Jimenez, Pedro Campuzano-Jost, T. Paul Bui, Glenn Diskin, James R. Podolske, Glen Sachse, and Ronald C. Cohen
Atmos. Chem. Phys., 22, 4253–4275, https://doi.org/10.5194/acp-22-4253-2022, https://doi.org/10.5194/acp-22-4253-2022, 2022
Short summary
Short summary
Smoke plumes are chemically complex. This work combines airborne observations of smoke plume composition with a photochemical model to probe the production of ozone and the fate of reactive gases in the outflow of a large wildfire. Model–measurement comparisons illustrate how uncertain emissions and chemical processes propagate into simulated chemical evolution. Results provide insight into how this system responds to perturbations, which can help guide future observation and modeling efforts.
Ka Ming Fung, Colette L. Heald, Jesse H. Kroll, Siyuan Wang, Duseong S. Jo, Andrew Gettelman, Zheng Lu, Xiaohong Liu, Rahul A. Zaveri, Eric C. Apel, Donald R. Blake, Jose-Luis Jimenez, Pedro Campuzano-Jost, Patrick R. Veres, Timothy S. Bates, John E. Shilling, and Maria Zawadowicz
Atmos. Chem. Phys., 22, 1549–1573, https://doi.org/10.5194/acp-22-1549-2022, https://doi.org/10.5194/acp-22-1549-2022, 2022
Short summary
Short summary
Understanding the natural aerosol burden in the preindustrial era is crucial for us to assess how atmospheric aerosols affect the Earth's radiative budgets. Our study explores how a detailed description of dimethyl sulfide (DMS) oxidation (implemented in the Community Atmospheric Model version 6 with chemistry, CAM6-chem) could help us better estimate the present-day and preindustrial concentrations of sulfate and other relevant chemicals, as well as the resulting aerosol radiative impacts.
Dongwook Kim, Changmin Cho, Seokhan Jeong, Soojin Lee, Benjamin A. Nault, Pedro Campuzano-Jost, Douglas A. Day, Jason C. Schroder, Jose L. Jimenez, Rainer Volkamer, Donald R. Blake, Armin Wisthaler, Alan Fried, Joshua P. DiGangi, Glenn S. Diskin, Sally E. Pusede, Samuel R. Hall, Kirk Ullmann, L. Gregory Huey, David J. Tanner, Jack Dibb, Christoph J. Knote, and Kyung-Eun Min
Atmos. Chem. Phys., 22, 805–821, https://doi.org/10.5194/acp-22-805-2022, https://doi.org/10.5194/acp-22-805-2022, 2022
Short summary
Short summary
CHOCHO was simulated using a 0-D box model constrained by measurements during the KORUS-AQ mission. CHOCHO concentration was high in large cities, aromatics being the most important precursors. Loss path to aerosol was the highest sink, contributing to ~ 20 % of secondary organic aerosol formation. Our work highlights that simple CHOCHO surface uptake approach is valid only for low aerosol conditions and more work is required to understand CHOCHO solubility in high-aerosol conditions.
Ira Leifer, Christopher Melton, and Donald R. Blake
Atmos. Chem. Phys., 21, 17607–17629, https://doi.org/10.5194/acp-21-17607-2021, https://doi.org/10.5194/acp-21-17607-2021, 2021
Short summary
Short summary
We demonstrate a novel application using air quality station data to derive 3-decade-averaged emissions from the Coal Oil Point (COP) seep field, a highly spatially and temporally variable geological migration system. Emissions were 19 Gg per year, suggesting that the COP seep field contributes 0.27 % of the global marine seep budget based on a recent estimate. This provides an advance over snapshot survey values by accounting for seasonal and interannual variations.
Hao Guo, Clare M. Flynn, Michael J. Prather, Sarah A. Strode, Stephen D. Steenrod, Louisa Emmons, Forrest Lacey, Jean-Francois Lamarque, Arlene M. Fiore, Gus Correa, Lee T. Murray, Glenn M. Wolfe, Jason M. St. Clair, Michelle Kim, John Crounse, Glenn Diskin, Joshua DiGangi, Bruce C. Daube, Roisin Commane, Kathryn McKain, Jeff Peischl, Thomas B. Ryerson, Chelsea Thompson, Thomas F. Hanisco, Donald Blake, Nicola J. Blake, Eric C. Apel, Rebecca S. Hornbrook, James W. Elkins, Eric J. Hintsa, Fred L. Moore, and Steven Wofsy
Atmos. Chem. Phys., 21, 13729–13746, https://doi.org/10.5194/acp-21-13729-2021, https://doi.org/10.5194/acp-21-13729-2021, 2021
Short summary
Short summary
The NASA Atmospheric Tomography (ATom) mission built a climatology of the chemical composition of tropospheric air parcels throughout the middle of the Pacific and Atlantic oceans. The level of detail allows us to reconstruct the photochemical budgets of O3 and CH4 over these vast, remote regions. We find that most of the chemical heterogeneity is captured at the resolution used in current global chemistry models and that the majority of reactivity occurs in the
hottest20 % of parcels.
Benjamin A. Nault, Duseong S. Jo, Brian C. McDonald, Pedro Campuzano-Jost, Douglas A. Day, Weiwei Hu, Jason C. Schroder, James Allan, Donald R. Blake, Manjula R. Canagaratna, Hugh Coe, Matthew M. Coggon, Peter F. DeCarlo, Glenn S. Diskin, Rachel Dunmore, Frank Flocke, Alan Fried, Jessica B. Gilman, Georgios Gkatzelis, Jacqui F. Hamilton, Thomas F. Hanisco, Patrick L. Hayes, Daven K. Henze, Alma Hodzic, James Hopkins, Min Hu, L. Greggory Huey, B. Thomas Jobson, William C. Kuster, Alastair Lewis, Meng Li, Jin Liao, M. Omar Nawaz, Ilana B. Pollack, Jeffrey Peischl, Bernhard Rappenglück, Claire E. Reeves, Dirk Richter, James M. Roberts, Thomas B. Ryerson, Min Shao, Jacob M. Sommers, James Walega, Carsten Warneke, Petter Weibring, Glenn M. Wolfe, Dominique E. Young, Bin Yuan, Qiang Zhang, Joost A. de Gouw, and Jose L. Jimenez
Atmos. Chem. Phys., 21, 11201–11224, https://doi.org/10.5194/acp-21-11201-2021, https://doi.org/10.5194/acp-21-11201-2021, 2021
Short summary
Short summary
Secondary organic aerosol (SOA) is an important aspect of poor air quality for urban regions around the world, where a large fraction of the population lives. However, there is still large uncertainty in predicting SOA in urban regions. Here, we used data from 11 urban campaigns and show that the variability in SOA production in these regions is predictable and is explained by key emissions. These results are used to estimate the premature mortality associated with SOA in urban regions.
Christina J. Williamson, Agnieszka Kupc, Andrew Rollins, Jan Kazil, Karl D. Froyd, Eric A. Ray, Daniel M. Murphy, Gregory P. Schill, Jeff Peischl, Chelsea Thompson, Ilann Bourgeois, Thomas B. Ryerson, Glenn S. Diskin, Joshua P. DiGangi, Donald R. Blake, Thao Paul V. Bui, Maximilian Dollner, Bernadett Weinzierl, and Charles A. Brock
Atmos. Chem. Phys., 21, 9065–9088, https://doi.org/10.5194/acp-21-9065-2021, https://doi.org/10.5194/acp-21-9065-2021, 2021
Short summary
Short summary
Aerosols in the stratosphere influence climate by scattering and absorbing sunlight and through chemical reactions occurring on the particles’ surfaces. We observed more nucleation mode aerosols (small aerosols, with diameters below 12 nm) in the mid- and high-latitude lowermost stratosphere (8–13 km) in the Northern Hemisphere (NH) than in the Southern Hemisphere. The most likely cause of this is aircraft emissions, which are concentrated in the NH at similar altitudes to our observations.
Dianne Sanchez, Roger Seco, Dasa Gu, Alex Guenther, John Mak, Youngjae Lee, Danbi Kim, Joonyoung Ahn, Don Blake, Scott Herndon, Daun Jeong, John T. Sullivan, Thomas Mcgee, Rokjin Park, and Saewung Kim
Atmos. Chem. Phys., 21, 6331–6345, https://doi.org/10.5194/acp-21-6331-2021, https://doi.org/10.5194/acp-21-6331-2021, 2021
Short summary
Short summary
We present observations of total reactive gases in a suburban forest observatory in the Seoul metropolitan area. The quantitative comparison with speciated trace gas observations illustrated significant underestimation in atmospheric reactivity from the speciated trace gas observational dataset. We present scientific discussion about potential causes.
Benjamin Gaubert, Louisa K. Emmons, Kevin Raeder, Simone Tilmes, Kazuyuki Miyazaki, Avelino F. Arellano Jr., Nellie Elguindi, Claire Granier, Wenfu Tang, Jérôme Barré, Helen M. Worden, Rebecca R. Buchholz, David P. Edwards, Philipp Franke, Jeffrey L. Anderson, Marielle Saunois, Jason Schroeder, Jung-Hun Woo, Isobel J. Simpson, Donald R. Blake, Simone Meinardi, Paul O. Wennberg, John Crounse, Alex Teng, Michelle Kim, Russell R. Dickerson, Hao He, Xinrong Ren, Sally E. Pusede, and Glenn S. Diskin
Atmos. Chem. Phys., 20, 14617–14647, https://doi.org/10.5194/acp-20-14617-2020, https://doi.org/10.5194/acp-20-14617-2020, 2020
Short summary
Short summary
This study investigates carbon monoxide pollution in East Asia during spring using a numerical model, satellite remote sensing, and aircraft measurements. We found an underestimation of emission sources. Correcting the emission bias can improve air quality forecasting of carbon monoxide and other species including ozone. Results also suggest that controlling VOC and CO emissions, in addition to widespread NOx controls, can improve ozone pollution over East Asia.
Amir H. Souri, Caroline R. Nowlan, Gonzalo González Abad, Lei Zhu, Donald R. Blake, Alan Fried, Andrew J. Weinheimer, Armin Wisthaler, Jung-Hun Woo, Qiang Zhang, Christopher E. Chan Miller, Xiong Liu, and Kelly Chance
Atmos. Chem. Phys., 20, 9837–9854, https://doi.org/10.5194/acp-20-9837-2020, https://doi.org/10.5194/acp-20-9837-2020, 2020
Short summary
Short summary
For the first time, we provide a joint nonlinear optimal estimate of NOx and NMVOC emissions during the KORUS-AQ campaign by simultaneously incorporating SAO's new product of HCHO columns from OMPS and OMI tropospheric NO2 columns into a regional model. Results demonstrate a promising improvement in the performance of the model in terms of HCHO and NO2 concentrations, which in turn enables us to quantify the impact of the emission changes on different pathways of ozone formation and loss.
Marielle Saunois, Ann R. Stavert, Ben Poulter, Philippe Bousquet, Josep G. Canadell, Robert B. Jackson, Peter A. Raymond, Edward J. Dlugokencky, Sander Houweling, Prabir K. Patra, Philippe Ciais, Vivek K. Arora, David Bastviken, Peter Bergamaschi, Donald R. Blake, Gordon Brailsford, Lori Bruhwiler, Kimberly M. Carlson, Mark Carrol, Simona Castaldi, Naveen Chandra, Cyril Crevoisier, Patrick M. Crill, Kristofer Covey, Charles L. Curry, Giuseppe Etiope, Christian Frankenberg, Nicola Gedney, Michaela I. Hegglin, Lena Höglund-Isaksson, Gustaf Hugelius, Misa Ishizawa, Akihiko Ito, Greet Janssens-Maenhout, Katherine M. Jensen, Fortunat Joos, Thomas Kleinen, Paul B. Krummel, Ray L. Langenfelds, Goulven G. Laruelle, Licheng Liu, Toshinobu Machida, Shamil Maksyutov, Kyle C. McDonald, Joe McNorton, Paul A. Miller, Joe R. Melton, Isamu Morino, Jurek Müller, Fabiola Murguia-Flores, Vaishali Naik, Yosuke Niwa, Sergio Noce, Simon O'Doherty, Robert J. Parker, Changhui Peng, Shushi Peng, Glen P. Peters, Catherine Prigent, Ronald Prinn, Michel Ramonet, Pierre Regnier, William J. Riley, Judith A. Rosentreter, Arjo Segers, Isobel J. Simpson, Hao Shi, Steven J. Smith, L. Paul Steele, Brett F. Thornton, Hanqin Tian, Yasunori Tohjima, Francesco N. Tubiello, Aki Tsuruta, Nicolas Viovy, Apostolos Voulgarakis, Thomas S. Weber, Michiel van Weele, Guido R. van der Werf, Ray F. Weiss, Doug Worthy, Debra Wunch, Yi Yin, Yukio Yoshida, Wenxin Zhang, Zhen Zhang, Yuanhong Zhao, Bo Zheng, Qing Zhu, Qiuan Zhu, and Qianlai Zhuang
Earth Syst. Sci. Data, 12, 1561–1623, https://doi.org/10.5194/essd-12-1561-2020, https://doi.org/10.5194/essd-12-1561-2020, 2020
Short summary
Short summary
Understanding and quantifying the global methane (CH4) budget is important for assessing realistic pathways to mitigate climate change. We have established a consortium of multidisciplinary scientists under the umbrella of the Global Carbon Project to synthesize and stimulate new research aimed at improving and regularly updating the global methane budget. This is the second version of the review dedicated to the decadal methane budget, integrating results of top-down and bottom-up estimates.
Katherine R. Travis, Colette L. Heald, Hannah M. Allen, Eric C. Apel, Stephen R. Arnold, Donald R. Blake, William H. Brune, Xin Chen, Róisín Commane, John D. Crounse, Bruce C. Daube, Glenn S. Diskin, James W. Elkins, Mathew J. Evans, Samuel R. Hall, Eric J. Hintsa, Rebecca S. Hornbrook, Prasad S. Kasibhatla, Michelle J. Kim, Gan Luo, Kathryn McKain, Dylan B. Millet, Fred L. Moore, Jeffrey Peischl, Thomas B. Ryerson, Tomás Sherwen, Alexander B. Thames, Kirk Ullmann, Xuan Wang, Paul O. Wennberg, Glenn M. Wolfe, and Fangqun Yu
Atmos. Chem. Phys., 20, 7753–7781, https://doi.org/10.5194/acp-20-7753-2020, https://doi.org/10.5194/acp-20-7753-2020, 2020
Short summary
Short summary
Atmospheric models overestimate the rate of removal of trace gases by the hydroxyl radical (OH). This is a concern for studies of the climate and air quality impacts of human activities. Here, we evaluate the performance of a commonly used model of atmospheric chemistry against data from the NASA Atmospheric Tomography Mission (ATom) over the remote oceans where models have received little validation. The model is generally successful, suggesting that biases in OH may be a concern over land.
Alexander B. Thames, William H. Brune, David O. Miller, Hannah M. Allen, Eric C. Apel, Donald R. Blake, T. Paul Bui, Roisin Commane, John D. Crounse, Bruce C. Daube, Glenn S. Diskin, Joshua P. DiGangi, James W. Elkins, Samuel R. Hall, Thomas F. Hanisco, Reem A. Hannun, Eric Hintsa, Rebecca S. Hornbrook, Michelle J. Kim, Kathryn McKain, Fred L. Moore, Julie M. Nicely, Jeffrey Peischl, Thomas B. Ryerson, Jason M. St. Clair, Colm Sweeney, Alex Teng, Chelsea R. Thompson, Kirk Ullmann, Paul O. Wennberg, and Glenn M. Wolfe
Atmos. Chem. Phys., 20, 4013–4029, https://doi.org/10.5194/acp-20-4013-2020, https://doi.org/10.5194/acp-20-4013-2020, 2020
Short summary
Short summary
Oceans and the atmosphere exchange volatile gases that react with the hydroxyl radical (OH). During a NASA airborne study, measurements of the total frequency of OH reactions, called the OH reactivity, were made in the marine boundary layer of the Atlantic and Pacific oceans. The measured OH reactivity often exceeded the OH reactivity calculated from measured chemical species. This missing OH reactivity appears to be from unmeasured volatile organic compounds coming out of the ocean.
Rebecca H. Schwantes, Louisa K. Emmons, John J. Orlando, Mary C. Barth, Geoffrey S. Tyndall, Samuel R. Hall, Kirk Ullmann, Jason M. St. Clair, Donald R. Blake, Armin Wisthaler, and Thao Paul V. Bui
Atmos. Chem. Phys., 20, 3739–3776, https://doi.org/10.5194/acp-20-3739-2020, https://doi.org/10.5194/acp-20-3739-2020, 2020
Short summary
Short summary
Ozone is a greenhouse gas and air pollutant that is harmful to human health and plants. During the summer in the southeastern US, many regional and global models are biased high for surface ozone compared to observations. Here adding more complex and updated chemistry for isoprene and terpenes, which are biogenic hydrocarbons emitted from trees and vegetation, into an earth system model greatly reduces the simulated surface ozone bias compared to aircraft and monitoring station data.
Md. Robiul Islam, Thilina Jayarathne, Isobel J. Simpson, Benjamin Werden, John Maben, Ashley Gilbert, Puppala S. Praveen, Sagar Adhikari, Arnico K. Panday, Maheswar Rupakheti, Donald R. Blake, Robert J. Yokelson, Peter F. DeCarlo, William C. Keene, and Elizabeth A. Stone
Atmos. Chem. Phys., 20, 2927–2951, https://doi.org/10.5194/acp-20-2927-2020, https://doi.org/10.5194/acp-20-2927-2020, 2020
Short summary
Short summary
The Kathmandu Valley experiences high levels of air pollution. In this study, atmospheric gases and particulate matter were characterized by online and off-line measurements, with an emphasis on understanding their sources. The major sources of particulate matter and trace gases were identified as garbage burning, biomass burning, and vehicles. The majority of secondary organic aerosol was attributed to anthropogenic precursors, while a minority was attributed to biogenic gases.
Daun Jeong, Roger Seco, Dasa Gu, Youngro Lee, Benjamin A. Nault, Christoph J. Knote, Tom Mcgee, John T. Sullivan, Jose L. Jimenez, Pedro Campuzano-Jost, Donald R. Blake, Dianne Sanchez, Alex B. Guenther, David Tanner, L. Gregory Huey, Russell Long, Bruce E. Anderson, Samuel R. Hall, Kirk Ullmann, Hye-jung Shin, Scott C. Herndon, Youngjae Lee, Danbi Kim, Joonyoung Ahn, and Saewung Kim
Atmos. Chem. Phys., 19, 12779–12795, https://doi.org/10.5194/acp-19-12779-2019, https://doi.org/10.5194/acp-19-12779-2019, 2019
Xin Chen, Dylan B. Millet, Hanwant B. Singh, Armin Wisthaler, Eric C. Apel, Elliot L. Atlas, Donald R. Blake, Ilann Bourgeois, Steven S. Brown, John D. Crounse, Joost A. de Gouw, Frank M. Flocke, Alan Fried, Brian G. Heikes, Rebecca S. Hornbrook, Tomas Mikoviny, Kyung-Eun Min, Markus Müller, J. Andrew Neuman, Daniel W. O'Sullivan, Jeff Peischl, Gabriele G. Pfister, Dirk Richter, James M. Roberts, Thomas B. Ryerson, Stephen R. Shertz, Chelsea R. Thompson, Victoria Treadaway, Patrick R. Veres, James Walega, Carsten Warneke, Rebecca A. Washenfelder, Petter Weibring, and Bin Yuan
Atmos. Chem. Phys., 19, 9097–9123, https://doi.org/10.5194/acp-19-9097-2019, https://doi.org/10.5194/acp-19-9097-2019, 2019
Short summary
Short summary
Volatile organic compounds (VOCs) affect air quality and modify the lifetimes of other pollutants. We combine a high-resolution 3-D atmospheric model with an ensemble of aircraft observations to perform an integrated analysis of the VOC budget over North America. We find that biogenic emissions provide the main source of VOC reactivity even in most major cities. Our findings point to key gaps in current models related to oxygenated VOCs and to the distribution of VOCs in the free troposphere.
Brigitte Rooney, Ran Zhao, Yuan Wang, Kelvin H. Bates, Ajay Pillarisetti, Sumit Sharma, Seema Kundu, Tami C. Bond, Nicholas L. Lam, Bora Ozaltun, Li Xu, Varun Goel, Lauren T. Fleming, Robert Weltman, Simone Meinardi, Donald R. Blake, Sergey A. Nizkorodov, Rufus D. Edwards, Ankit Yadav, Narendra K. Arora, Kirk R. Smith, and John H. Seinfeld
Atmos. Chem. Phys., 19, 7719–7742, https://doi.org/10.5194/acp-19-7719-2019, https://doi.org/10.5194/acp-19-7719-2019, 2019
Short summary
Short summary
Approximately 3 billion people worldwide cook with solid fuels, such as wood, charcoal, and agricultural residues, that are often combusted in inefficient cookstoves. Here, we simulate the distribution of the two major health-damaging outdoor pollution species (PM2.5 and O3) using state-of-the-science emissions databases and atmospheric chemical transport models to estimate the impact of household combustion on ambient air quality in India.
Moshe Shechner, Alex Guenther, Robert Rhew, Asher Wishkerman, Qian Li, Donald Blake, Gil Lerner, and Eran Tas
Atmos. Chem. Phys., 19, 7667–7690, https://doi.org/10.5194/acp-19-7667-2019, https://doi.org/10.5194/acp-19-7667-2019, 2019
Short summary
Short summary
Along with other recent studies, our findings point to strong emission of a suite of volatile halogenated organic compounds (VHOCs) from saline soils and salt lakes. Some emitted VHOCs were not known to be emitted from terrestrial sources, and our observations point to apparent new common controls for the emission of several VHOCs. These findings are an important milestone toward a more complete understanding of the effect of VHOCs on atmospheric ozone concentrations and oxidation capacity.
Benjamin A. Nault, Pedro Campuzano-Jost, Douglas A. Day, Jason C. Schroder, Bruce Anderson, Andreas J. Beyersdorf, Donald R. Blake, William H. Brune, Yonghoon Choi, Chelsea A. Corr, Joost A. de Gouw, Jack Dibb, Joshua P. DiGangi, Glenn S. Diskin, Alan Fried, L. Gregory Huey, Michelle J. Kim, Christoph J. Knote, Kara D. Lamb, Taehyoung Lee, Taehyun Park, Sally E. Pusede, Eric Scheuer, Kenneth L. Thornhill, Jung-Hun Woo, and Jose L. Jimenez
Atmos. Chem. Phys., 18, 17769–17800, https://doi.org/10.5194/acp-18-17769-2018, https://doi.org/10.5194/acp-18-17769-2018, 2018
Short summary
Short summary
Aerosol impacts visibility and human health in large cities. Sources of aerosols are still highly uncertain, especially for cities surrounded by numerous other cities. We use observations collected during the Korea–United States Air Quality study to determine sources of organic aerosol (OA). We find that secondary OA (SOA) is rapidly produced over Seoul, South Korea, and that the sources of the SOA originate from short-lived hydrocarbons, which originate from local emissions.
Lauren T. Fleming, Robert Weltman, Ankit Yadav, Rufus D. Edwards, Narendra K. Arora, Ajay Pillarisetti, Simone Meinardi, Kirk R. Smith, Donald R. Blake, and Sergey A. Nizkorodov
Atmos. Chem. Phys., 18, 15169–15182, https://doi.org/10.5194/acp-18-15169-2018, https://doi.org/10.5194/acp-18-15169-2018, 2018
Short summary
Short summary
Brushwood- and dung-burning cookstoves are used for cooking and heating and influence ambient air quality for millions of people. We report emission factors from the more efficient cookstove, the chulha, compared to the smoldering angithi, for carbon dioxide, carbon monoxide, and 76 volatile organic compounds. This comprehensive gas emission inventory should inform policy makers about the magnitude of the effect of cookstoves on the air quality in India.
William H. Brune, Xinrong Ren, Li Zhang, Jingqiu Mao, David O. Miller, Bruce E. Anderson, Donald R. Blake, Ronald C. Cohen, Glenn S. Diskin, Samuel R. Hall, Thomas F. Hanisco, L. Gregory Huey, Benjamin A. Nault, Jeff Peischl, Ilana Pollack, Thomas B. Ryerson, Taylor Shingler, Armin Sorooshian, Kirk Ullmann, Armin Wisthaler, and Paul J. Wooldridge
Atmos. Chem. Phys., 18, 14493–14510, https://doi.org/10.5194/acp-18-14493-2018, https://doi.org/10.5194/acp-18-14493-2018, 2018
Short summary
Short summary
Thunderstorms pull in polluted air from near the ground, transport it up through clouds containing lightning, and deposit it at altitudes where airplanes fly. The resulting chemical mixture in this air reacts to form ozone and particles, which affect climate. In this study, aircraft observations of the reactive gases responsible for this chemistry generally agree with modeled values, even in ice clouds. Thus, atmospheric oxidation chemistry appears to be mostly understood for this environment.
Yanhong Zhu, Lingxiao Yang, Jianmin Chen, Kimitaka Kawamura, Mamiko Sato, Andreas Tilgner, Dominik van Pinxteren, Ying Chen, Likun Xue, Xinfeng Wang, Isobel J. Simpson, Hartmut Herrmann, Donald R. Blake, and Wenxing Wang
Atmos. Chem. Phys., 18, 10741–10758, https://doi.org/10.5194/acp-18-10741-2018, https://doi.org/10.5194/acp-18-10741-2018, 2018
Short summary
Short summary
Molecular distributions of dicarboxylic acids, oxocarboxylic acids and α-dicarbonyls in the free troposphere are identified, and their concentration variations between 2014 and 2006 are presented. High nighttime concentrations were probably due to precursor emissions and aqueous-phase oxidation. Biomass burning was significant, but its tracer levoglucosan in 2014 was 5 times lower than 2006 concentrations. Finally, regional emission from anthropogenic activities was identified as a major source.
Roya Bahreini, Ravan Ahmadov, Stu A. McKeen, Kennedy T. Vu, Justin H. Dingle, Eric C. Apel, Donald R. Blake, Nicola Blake, Teresa L. Campos, Chris Cantrell, Frank Flocke, Alan Fried, Jessica B. Gilman, Alan J. Hills, Rebecca S. Hornbrook, Greg Huey, Lisa Kaser, Brian M. Lerner, Roy L. Mauldin, Simone Meinardi, Denise D. Montzka, Dirk Richter, Jason R. Schroeder, Meghan Stell, David Tanner, James Walega, Peter Weibring, and Andrew Weinheimer
Atmos. Chem. Phys., 18, 8293–8312, https://doi.org/10.5194/acp-18-8293-2018, https://doi.org/10.5194/acp-18-8293-2018, 2018
Short summary
Short summary
We measured organic aerosol (OA) and relevant trace gases during FRAPPÉ in the Colorado Front Range, with the goal of characterizing summertime OA formation. Our results indicate a significant production of secondary OA (SOA) in this region. About 2 μg m−3 of OA was present at background CO levels, suggesting contribution of non-combustion sources to SOA. Contribution of oil- and gas-related activities to anthropogenic SOA was modeled to be ~38 %. Biogenic SOA contributed to >40 % of OA.
Lauren T. Fleming, Peng Lin, Alexander Laskin, Julia Laskin, Robert Weltman, Rufus D. Edwards, Narendra K. Arora, Ankit Yadav, Simone Meinardi, Donald R. Blake, Ajay Pillarisetti, Kirk R. Smith, and Sergey A. Nizkorodov
Atmos. Chem. Phys., 18, 2461–2480, https://doi.org/10.5194/acp-18-2461-2018, https://doi.org/10.5194/acp-18-2461-2018, 2018
Short summary
Short summary
Household cooking emissions in India, which rely on traditional meal preparation with dung- and brushwood-fueled cookstoves, produce copious amounts of particulate matter. Detailed chemical analysis of the compounds found in this particulate matter detected a large number of previously unidentified nitrogen-containing organic compounds, originating from dung-fueled cookstoves.
Julia Montoya-Aguilera, Jeremy R. Horne, Mallory L. Hinks, Lauren T. Fleming, Véronique Perraud, Peng Lin, Alexander Laskin, Julia Laskin, Donald Dabdub, and Sergey A. Nizkorodov
Atmos. Chem. Phys., 17, 11605–11621, https://doi.org/10.5194/acp-17-11605-2017, https://doi.org/10.5194/acp-17-11605-2017, 2017
Short summary
Short summary
Various plant species emit a chemical compound called indole under stressed conditions or during flowering events. Our experiments show that indole can be oxidized in the atmosphere to produce a brownish haze containing well-known indole-derived dyes, such as indigo dye. An airshed model that includes indole chemistry shows that indole aerosol makes a significant contribution to the total aerosol burden and to visibility.
Bianca C. Baier, William H. Brune, David O. Miller, Donald Blake, Russell Long, Armin Wisthaler, Christopher Cantrell, Alan Fried, Brian Heikes, Steven Brown, Erin McDuffie, Frank Flocke, Eric Apel, Lisa Kaser, and Andrew Weinheimer
Atmos. Chem. Phys., 17, 11273–11292, https://doi.org/10.5194/acp-17-11273-2017, https://doi.org/10.5194/acp-17-11273-2017, 2017
Short summary
Short summary
Ozone production rates were measured using the Measurement of Ozone Production Sensor (MOPS). Measurements are compared to modeled ozone production rates using two different chemical mechanisms. At high nitric oxide levels, observed rates are higher than those modeled, prompting the need to revisit current model photochemistry. These direct measurements can add to our understanding of the ozone chemistry within air quality models and can be used to guide government regulatory strategies.
Marielle Saunois, Philippe Bousquet, Ben Poulter, Anna Peregon, Philippe Ciais, Josep G. Canadell, Edward J. Dlugokencky, Giuseppe Etiope, David Bastviken, Sander Houweling, Greet Janssens-Maenhout, Francesco N. Tubiello, Simona Castaldi, Robert B. Jackson, Mihai Alexe, Vivek K. Arora, David J. Beerling, Peter Bergamaschi, Donald R. Blake, Gordon Brailsford, Lori Bruhwiler, Cyril Crevoisier, Patrick Crill, Kristofer Covey, Christian Frankenberg, Nicola Gedney, Lena Höglund-Isaksson, Misa Ishizawa, Akihiko Ito, Fortunat Joos, Heon-Sook Kim, Thomas Kleinen, Paul Krummel, Jean-François Lamarque, Ray Langenfelds, Robin Locatelli, Toshinobu Machida, Shamil Maksyutov, Joe R. Melton, Isamu Morino, Vaishali Naik, Simon O'Doherty, Frans-Jan W. Parmentier, Prabir K. Patra, Changhui Peng, Shushi Peng, Glen P. Peters, Isabelle Pison, Ronald Prinn, Michel Ramonet, William J. Riley, Makoto Saito, Monia Santini, Ronny Schroeder, Isobel J. Simpson, Renato Spahni, Atsushi Takizawa, Brett F. Thornton, Hanqin Tian, Yasunori Tohjima, Nicolas Viovy, Apostolos Voulgarakis, Ray Weiss, David J. Wilton, Andy Wiltshire, Doug Worthy, Debra Wunch, Xiyan Xu, Yukio Yoshida, Bowen Zhang, Zhen Zhang, and Qiuan Zhu
Atmos. Chem. Phys., 17, 11135–11161, https://doi.org/10.5194/acp-17-11135-2017, https://doi.org/10.5194/acp-17-11135-2017, 2017
Short summary
Short summary
Following the Global Methane Budget 2000–2012 published in Saunois et al. (2016), we use the same dataset of bottom-up and top-down approaches to discuss the variations in methane emissions over the period 2000–2012. The changes in emissions are discussed both in terms of trends and quasi-decadal changes. The ensemble gathered here allows us to synthesise the robust changes in terms of regional and sectorial contributions to the increasing methane emissions.
Yu Wang, Hao Wang, Hai Guo, Xiaopu Lyu, Hairong Cheng, Zhenhao Ling, Peter K. K. Louie, Isobel J. Simpson, Simone Meinardi, and Donald R. Blake
Atmos. Chem. Phys., 17, 10919–10935, https://doi.org/10.5194/acp-17-10919-2017, https://doi.org/10.5194/acp-17-10919-2017, 2017
Short summary
Short summary
Though the Hong Kong government has made great efforts toward a reduction in emissions, ambient O3 levels have presented an increasing trend in the past decade. Data analysis and model simulations indicated that the locally produced O3 in Hong Kong varied by seasons, while regional transport from the PRD region made a substantial contribution to ambient O3 in Hong Kong and even increased in autumn. This long-term study has important implications for other Chinese cities to reduce O3 pollution.
Yue Zhao, Michelle C. Fairhurst, Lisa M. Wingen, Véronique Perraud, Michael J. Ezell, and Barbara J. Finlayson-Pitts
Atmos. Meas. Tech., 10, 1373–1386, https://doi.org/10.5194/amt-10-1373-2017, https://doi.org/10.5194/amt-10-1373-2017, 2017
Short summary
Short summary
Two model systems are studied: dicarboxylic acid particles with gaseous amines and α-cedrene ozonolysis particles. Measurements by direct analysis in real-time mass spectrometry and high-resolution time-of-flight aerosol mass spectrometry
show that the reaction of the amines with the acid particles is restricted to the surface layer, with an odd–even alternating pattern. Furthermore, in the α-cedrene study, DART-MS is able to differentiate isomers based on their volatility.
Lindsay E. Hatch, Robert J. Yokelson, Chelsea E. Stockwell, Patrick R. Veres, Isobel J. Simpson, Donald R. Blake, John J. Orlando, and Kelley C. Barsanti
Atmos. Chem. Phys., 17, 1471–1489, https://doi.org/10.5194/acp-17-1471-2017, https://doi.org/10.5194/acp-17-1471-2017, 2017
Short summary
Short summary
The most comprehensive database of gaseous biomass burning emissions to date was compiled. Four complementary instruments were deployed together during laboratory fires. The results generally compared within experimental uncertainty and highlighted that a range of measurement approaches are required for adequate characterization of smoke composition. Observed compounds were binned based on volatility, and priority recommendations were made to improve secondary organic aerosol predictions.
Samuel A. Atwood, Jeffrey S. Reid, Sonia M. Kreidenweis, Donald R. Blake, Haflidi H. Jonsson, Nofel D. Lagrosas, Peng Xian, Elizabeth A. Reid, Walter R. Sessions, and James B. Simpas
Atmos. Chem. Phys., 17, 1105–1123, https://doi.org/10.5194/acp-17-1105-2017, https://doi.org/10.5194/acp-17-1105-2017, 2017
Short summary
Short summary
Aerosol particles were measured by ship in remote marine regions of the South China Sea as part of the 2012 7 Southeast Asian Studies (7SEAS) experiments. As the particle populations changed throughout the experiment, the distribution of particle sizes and the amount of water that collected on them changed as well. These changes were associated with various impacts from smoke, sea salt, and pollution sources, and impact how clouds form and precipitation occurs in the region.
Marielle Saunois, Philippe Bousquet, Ben Poulter, Anna Peregon, Philippe Ciais, Josep G. Canadell, Edward J. Dlugokencky, Giuseppe Etiope, David Bastviken, Sander Houweling, Greet Janssens-Maenhout, Francesco N. Tubiello, Simona Castaldi, Robert B. Jackson, Mihai Alexe, Vivek K. Arora, David J. Beerling, Peter Bergamaschi, Donald R. Blake, Gordon Brailsford, Victor Brovkin, Lori Bruhwiler, Cyril Crevoisier, Patrick Crill, Kristofer Covey, Charles Curry, Christian Frankenberg, Nicola Gedney, Lena Höglund-Isaksson, Misa Ishizawa, Akihiko Ito, Fortunat Joos, Heon-Sook Kim, Thomas Kleinen, Paul Krummel, Jean-François Lamarque, Ray Langenfelds, Robin Locatelli, Toshinobu Machida, Shamil Maksyutov, Kyle C. McDonald, Julia Marshall, Joe R. Melton, Isamu Morino, Vaishali Naik, Simon O'Doherty, Frans-Jan W. Parmentier, Prabir K. Patra, Changhui Peng, Shushi Peng, Glen P. Peters, Isabelle Pison, Catherine Prigent, Ronald Prinn, Michel Ramonet, William J. Riley, Makoto Saito, Monia Santini, Ronny Schroeder, Isobel J. Simpson, Renato Spahni, Paul Steele, Atsushi Takizawa, Brett F. Thornton, Hanqin Tian, Yasunori Tohjima, Nicolas Viovy, Apostolos Voulgarakis, Michiel van Weele, Guido R. van der Werf, Ray Weiss, Christine Wiedinmyer, David J. Wilton, Andy Wiltshire, Doug Worthy, Debra Wunch, Xiyan Xu, Yukio Yoshida, Bowen Zhang, Zhen Zhang, and Qiuan Zhu
Earth Syst. Sci. Data, 8, 697–751, https://doi.org/10.5194/essd-8-697-2016, https://doi.org/10.5194/essd-8-697-2016, 2016
Short summary
Short summary
An accurate assessment of the methane budget is important to understand the atmospheric methane concentrations and trends and to provide realistic pathways for climate change mitigation. The various and diffuse sources of methane as well and its oxidation by a very short lifetime radical challenge this assessment. We quantify the methane sources and sinks as well as their uncertainties based on both bottom-up and top-down approaches provided by a broad international scientific community.
Long Cui, Zhou Zhang, Yu Huang, Shun Cheng Lee, Donald Ray Blake, Kin Fai Ho, Bei Wang, Yuan Gao, Xin Ming Wang, and Peter Kwok Keung Louie
Atmos. Meas. Tech., 9, 5763–5779, https://doi.org/10.5194/amt-9-5763-2016, https://doi.org/10.5194/amt-9-5763-2016, 2016
Short summary
Short summary
In this manuscript, the effect of ambient RH and T on HCHO measurements by PTR-MS was investigated, and the Poly 2-D regression was found to be a good nonlinear surface simulation of R (RH, T) for correcting measured HCHO concentration. Intercomparisons between PTR-MS and other OVOC and VOC measuring techniques were conducted through a field study in urban roadside areas of Hong Kong primarily, and good agreements were found between these different techniques.
Jeffrey S. Reid, Peng Xian, Brent N. Holben, Edward J. Hyer, Elizabeth A. Reid, Santo V. Salinas, Jianglong Zhang, James R. Campbell, Boon Ning Chew, Robert E. Holz, Arunas P. Kuciauskas, Nofel Lagrosas, Derek J. Posselt, Charles R. Sampson, Annette L. Walker, E. Judd Welton, and Chidong Zhang
Atmos. Chem. Phys., 16, 14041–14056, https://doi.org/10.5194/acp-16-14041-2016, https://doi.org/10.5194/acp-16-14041-2016, 2016
Short summary
Short summary
This paper describes aspects of the 2012 7 Southeast Asian Studies (7SEAS) operations period, the largest within the Maritime Continent. Included were an enhanced deployment of Aerosol Robotic Network (AERONET) sun photometers, multiple lidars, and a Singapore supersite. Simultaneously, a ship was dispatched to the Palawan Archipelago and Sulu Sea of the Philippines for September 2012 to observe transported smoke and pollution as it entered the southwest monsoon trough.
Debra Wunch, Geoffrey C. Toon, Jacob K. Hedelius, Nicholas Vizenor, Coleen M. Roehl, Katherine M. Saad, Jean-François L. Blavier, Donald R. Blake, and Paul O. Wennberg
Atmos. Chem. Phys., 16, 14091–14105, https://doi.org/10.5194/acp-16-14091-2016, https://doi.org/10.5194/acp-16-14091-2016, 2016
Short summary
Short summary
This paper investigates the cause of the known underestimate of bottom-up inventories of methane in California's South Coast Air Basin (SoCAB). We use total column measurements of methane, ethane, carbon monoxide, and other trace gases beginning in the late 1980s to calculate emissions and attribute sources of excess methane to the atmosphere. We conclude that more than half of the excess methane to the SoCAB atmosphere is attributable to processed natural gas.
Jeffrey S. Reid, Nofel D. Lagrosas, Haflidi H. Jonsson, Elizabeth A. Reid, Samuel A. Atwood, Thomas J. Boyd, Virendra P. Ghate, Peng Xian, Derek J. Posselt, James B. Simpas, Sherdon N. Uy, Kimo Zaiger, Donald R. Blake, Anthony Bucholtz, James R. Campbell, Boon Ning Chew, Steven S. Cliff, Brent N. Holben, Robert E. Holz, Edward J. Hyer, Sonia M. Kreidenweis, Arunas P. Kuciauskas, Simone Lolli, Min Oo, Kevin D. Perry, Santo V. Salinas, Walter R. Sessions, Alexander Smirnov, Annette L. Walker, Qing Wang, Liya Yu, Jianglong Zhang, and Yongjing Zhao
Atmos. Chem. Phys., 16, 14057–14078, https://doi.org/10.5194/acp-16-14057-2016, https://doi.org/10.5194/acp-16-14057-2016, 2016
Short summary
Short summary
This paper describes aspects of the 2012 7 Southeast Asian Studies (7SEAS) operations period, the largest within the Maritime Continent. Included were an enhanced deployment of Aerosol Robotic Network (AERONET) sun photometers, multiple lidars, and a Singapore supersite. Simultaneously, a ship was dispatched to the Palawan Archipelago and Sulu Sea of the Philippines for September 2012 to observe transported smoke and pollution as it entered the southwest monsoon trough.
Chelsea E. Stockwell, Thilina Jayarathne, Mark A. Cochrane, Kevin C. Ryan, Erianto I. Putra, Bambang H. Saharjo, Ati D. Nurhayati, Israr Albar, Donald R. Blake, Isobel J. Simpson, Elizabeth A. Stone, and Robert J. Yokelson
Atmos. Chem. Phys., 16, 11711–11732, https://doi.org/10.5194/acp-16-11711-2016, https://doi.org/10.5194/acp-16-11711-2016, 2016
Short summary
Short summary
We present the first or rare field measurements of emission factors for Indonesian peat fires made in Borneo during the 2015 El Niño. The data include up to 90 gases, aerosol mass, and aerosol optical properties at two wavelengths (405 and 870 nm). Brown carbon dominates aerosol absorption, revisions to previous values for greenhouse gas emissions are supported and air toxics are assessed.
Chelsea E. Stockwell, Ted J. Christian, J. Douglas Goetz, Thilina Jayarathne, Prakash V. Bhave, Puppala S. Praveen, Sagar Adhikari, Rashmi Maharjan, Peter F. DeCarlo, Elizabeth A. Stone, Eri Saikawa, Donald R. Blake, Isobel J. Simpson, Robert J. Yokelson, and Arnico K. Panday
Atmos. Chem. Phys., 16, 11043–11081, https://doi.org/10.5194/acp-16-11043-2016, https://doi.org/10.5194/acp-16-11043-2016, 2016
Short summary
Short summary
We present the first, or rare, field measurements in South Asia of emission factors for up to 80 gases (pollutants, greenhouse gases, and precursors) and black carbon and aerosol optical properties at 405 and 870 nm for many previously under-sampled sources that are important in developing countries such as cooking with dung and wood, garbage and crop residue burning, brick kilns, motorcycles, generators and pumps, etc. Brown carbon contributes significantly to total aerosol absorption.
Likun Xue, Rongrong Gu, Tao Wang, Xinfeng Wang, Sandra Saunders, Donald Blake, Peter K. K. Louie, Connie W. Y. Luk, Isobel Simpson, Zheng Xu, Zhe Wang, Yuan Gao, Shuncheng Lee, Abdelwahid Mellouki, and Wenxing Wang
Atmos. Chem. Phys., 16, 9891–9903, https://doi.org/10.5194/acp-16-9891-2016, https://doi.org/10.5194/acp-16-9891-2016, 2016
Short summary
Short summary
The chemical budgets and principal sources of ROx and NO3 radicals during a multi-day photochemical smog episode in Hong Kong are elucidated by an observation-constrained MCM model. NO3 was shown to be an important oxidant even during daytime in a pollution case when high aerosol loading attenuated the solar irradiation. This study suggests the potential important role of daytime NO3 chemistry in polluted atmospheres under conditions with the co-existence of abundant O3, NO2, VOCs, and aerosols.
Zhenhao Ling, Hai Guo, Isobel Jane Simpson, Sandra Maria Saunders, Sean Ho Man Lam, Xiaopu Lyu, and Donald Ray Blake
Atmos. Chem. Phys., 16, 8141–8156, https://doi.org/10.5194/acp-16-8141-2016, https://doi.org/10.5194/acp-16-8141-2016, 2016
Xiaopu Lyu, Hai Guo, Isobel J. Simpson, Simone Meinardi, Peter K. K. Louie, Zhenhao Ling, Yu Wang, Ming Liu, Connie W. Y. Luk, Nan Wang, and Donald R. Blake
Atmos. Chem. Phys., 16, 6609–6626, https://doi.org/10.5194/acp-16-6609-2016, https://doi.org/10.5194/acp-16-6609-2016, 2016
Short summary
Short summary
In this study, the effectiveness of a LPG converter replacement program was evaluated. It was found that LPG-related VOCs and NOx decreased significantly due to the implementation of the program. Source apportionment also revealed the reduction of VOCs and NOx in LPG-fueled vehicle exhaust. From before to during the program, O3 increased slightly, mainly due to the reduction of NOx in LPG-fueled vehicle exhaust. To retain zero O3 increment, the lowest reduction ratio of VOCs / NOx was determined.
Simone Tilmes, Jean-Francois Lamarque, Louisa K. Emmons, Doug E. Kinnison, Dan Marsh, Rolando R. Garcia, Anne K. Smith, Ryan R. Neely, Andrew Conley, Francis Vitt, Maria Val Martin, Hiroshi Tanimoto, Isobel Simpson, Don R. Blake, and Nicola Blake
Geosci. Model Dev., 9, 1853–1890, https://doi.org/10.5194/gmd-9-1853-2016, https://doi.org/10.5194/gmd-9-1853-2016, 2016
Short summary
Short summary
The state of the art Community Earth System Model, CESM1 CAM4-chem has been used to perform reference and sensitivity simulations as part of the Chemistry Climate Model Initiative (CCMI). Specifics of the model and details regarding the setup of the simulations are described. In additions, the main behavior of the model, including selected chemical species have been evaluated with climatological datasets. This paper is therefore a references for studies that use the provided model results.
Jenny A. Fisher, Daniel J. Jacob, Katherine R. Travis, Patrick S. Kim, Eloise A. Marais, Christopher Chan Miller, Karen Yu, Lei Zhu, Robert M. Yantosca, Melissa P. Sulprizio, Jingqiu Mao, Paul O. Wennberg, John D. Crounse, Alex P. Teng, Tran B. Nguyen, Jason M. St. Clair, Ronald C. Cohen, Paul Romer, Benjamin A. Nault, Paul J. Wooldridge, Jose L. Jimenez, Pedro Campuzano-Jost, Douglas A. Day, Weiwei Hu, Paul B. Shepson, Fulizi Xiong, Donald R. Blake, Allen H. Goldstein, Pawel K. Misztal, Thomas F. Hanisco, Glenn M. Wolfe, Thomas B. Ryerson, Armin Wisthaler, and Tomas Mikoviny
Atmos. Chem. Phys., 16, 5969–5991, https://doi.org/10.5194/acp-16-5969-2016, https://doi.org/10.5194/acp-16-5969-2016, 2016
Short summary
Short summary
We use new airborne and ground-based observations from two summer 2013 campaigns in the southeastern US, interpreted with a chemical transport model, to understand the impact of isoprene and monoterpene chemistry on the atmospheric NOx budget via production of organic nitrates (RONO2). We find that a diversity of species contribute to observed RONO2. Our work implies that the NOx sink to RONO2 production is only sensitive to NOx emissions in regions where they are already low.
Yue Zhao, Lisa M. Wingen, Véronique Perraud, and Barbara J. Finlayson-Pitts
Atmos. Chem. Phys., 16, 3245–3264, https://doi.org/10.5194/acp-16-3245-2016, https://doi.org/10.5194/acp-16-3245-2016, 2016
Short summary
Short summary
A significant fraction of airborne particles, which have significant impacts on human health, visibility, and climate, are formed from the oxidation of gaseous precursors to generate low-volatility products. We show here that a sesquiterpene, α-cedrene, efficiently forms high-viscosity semisolid particles with complex composition via mechanisms that involve the highly reactive Criegee intermediate and that high molecular weight products play an important role in new particle formation.
L. K. Emmons, S. R. Arnold, S. A. Monks, V. Huijnen, S. Tilmes, K. S. Law, J. L. Thomas, J.-C. Raut, I. Bouarar, S. Turquety, Y. Long, B. Duncan, S. Steenrod, S. Strode, J. Flemming, J. Mao, J. Langner, A. M. Thompson, D. Tarasick, E. C. Apel, D. R. Blake, R. C. Cohen, J. Dibb, G. S. Diskin, A. Fried, S. R. Hall, L. G. Huey, A. J. Weinheimer, A. Wisthaler, T. Mikoviny, J. Nowak, J. Peischl, J. M. Roberts, T. Ryerson, C. Warneke, and D. Helmig
Atmos. Chem. Phys., 15, 6721–6744, https://doi.org/10.5194/acp-15-6721-2015, https://doi.org/10.5194/acp-15-6721-2015, 2015
Short summary
Short summary
Eleven 3-D tropospheric chemistry models have been compared and evaluated with observations in the Arctic during the International Polar Year (IPY 2008). Large differences are seen among the models, particularly related to the model chemistry of volatile organic compounds (VOCs) and reactive nitrogen (NOx, PAN, HNO3) partitioning. Consistency among the models in the underestimation of CO, ethane and propane indicates the emission inventory is too low for these compounds.
J. S. Reid, N. D. Lagrosas, H. H. Jonsson, E. A. Reid, W. R. Sessions, J. B. Simpas, S. N. Uy, T. J. Boyd, S. A. Atwood, D. R. Blake, J. R. Campbell, S. S. Cliff, B. N. Holben, R. E. Holz, E. J. Hyer, P. Lynch, S. Meinardi, D. J. Posselt, K. A. Richardson, S. V. Salinas, A. Smirnov, Q. Wang, L. Yu, and J. Zhang
Atmos. Chem. Phys., 15, 1745–1768, https://doi.org/10.5194/acp-15-1745-2015, https://doi.org/10.5194/acp-15-1745-2015, 2015
Short summary
Short summary
This paper reports on the first measurements of aerosol particles embedded in the convectively active southwest monsoonal flow of the South China Sea. The paper describes the research cruise and discusses how variability in aerosol characteristics relates to regional meteorological phenomena such as and the Madden Julian Oscillation, tropical cyclones, squall lines and the monsoonal flow itself. Of special interest is how aerosol transport relates to meteorological drivers of convective activity.
L. K. Xue, T. Wang, J. Gao, A. J. Ding, X. H. Zhou, D. R. Blake, X. F. Wang, S. M. Saunders, S. J. Fan, H. C. Zuo, Q. Z. Zhang, and W. X. Wang
Atmos. Chem. Phys., 14, 13175–13188, https://doi.org/10.5194/acp-14-13175-2014, https://doi.org/10.5194/acp-14-13175-2014, 2014
M. Maione, F. Graziosi, J. Arduini, F. Furlani, U. Giostra, D. R. Blake, P. Bonasoni, X. Fang, S. A. Montzka, S. J. O'Doherty, S. Reimann, A. Stohl, and M. K. Vollmer
Atmos. Chem. Phys., 14, 9755–9770, https://doi.org/10.5194/acp-14-9755-2014, https://doi.org/10.5194/acp-14-9755-2014, 2014
M. L. Dawson, V. Perraud, A. Gomez, K. D. Arquero, M. J. Ezell, and B. J. Finlayson-Pitts
Atmos. Meas. Tech., 7, 2733–2744, https://doi.org/10.5194/amt-7-2733-2014, https://doi.org/10.5194/amt-7-2733-2014, 2014
Q. Liang, E. Atlas, D. Blake, M. Dorf, K. Pfeilsticker, and S. Schauffler
Atmos. Chem. Phys., 14, 5781–5792, https://doi.org/10.5194/acp-14-5781-2014, https://doi.org/10.5194/acp-14-5781-2014, 2014
D. R. Gentner, T. B. Ford, A. Guha, K. Boulanger, J. Brioude, W. M. Angevine, J. A. de Gouw, C. Warneke, J. B. Gilman, T. B. Ryerson, J. Peischl, S. Meinardi, D. R. Blake, E. Atlas, W. A. Lonneman, T. E. Kleindienst, M. R. Beaver, J. M. St. Clair, P. O. Wennberg, T. C. VandenBoer, M. Z. Markovic, J. G. Murphy, R. A. Harley, and A. H. Goldstein
Atmos. Chem. Phys., 14, 4955–4978, https://doi.org/10.5194/acp-14-4955-2014, https://doi.org/10.5194/acp-14-4955-2014, 2014
C. J. Young, R. A. Washenfelder, P. M. Edwards, D. D. Parrish, J. B. Gilman, W. C. Kuster, L. H. Mielke, H. D. Osthoff, C. Tsai, O. Pikelnaya, J. Stutz, P. R. Veres, J. M. Roberts, S. Griffith, S. Dusanter, P. S. Stevens, J. Flynn, N. Grossberg, B. Lefer, J. S. Holloway, J. Peischl, T. B. Ryerson, E. L. Atlas, D. R. Blake, and S. S. Brown
Atmos. Chem. Phys., 14, 3427–3440, https://doi.org/10.5194/acp-14-3427-2014, https://doi.org/10.5194/acp-14-3427-2014, 2014
B. D. Hall, A. Engel, J. Mühle, J. W. Elkins, F. Artuso, E. Atlas, M. Aydin, D. Blake, E.-G. Brunke, S. Chiavarini, P. J. Fraser, J. Happell, P. B. Krummel, I. Levin, M. Loewenstein, M. Maione, S. A. Montzka, S. O'Doherty, S. Reimann, G. Rhoderick, E. S. Saltzman, H. E. Scheel, L. P. Steele, M. K. Vollmer, R. F. Weiss, D. Worthy, and Y. Yokouchi
Atmos. Meas. Tech., 7, 469–490, https://doi.org/10.5194/amt-7-469-2014, https://doi.org/10.5194/amt-7-469-2014, 2014
S. Tegtmeier, K. Krüger, B. Quack, E. Atlas, D. R. Blake, H. Boenisch, A. Engel, H. Hepach, R. Hossaini, M. A. Navarro, S. Raimund, S. Sala, Q. Shi, and F. Ziska
Atmos. Chem. Phys., 13, 11869–11886, https://doi.org/10.5194/acp-13-11869-2013, https://doi.org/10.5194/acp-13-11869-2013, 2013
L. K. Xue, T. Wang, J. Gao, A. J. Ding, X. H. Zhou, D. R. Blake, X. F. Wang, S. M. Saunders, S. J. Fan, H. C. Zuo, Q. Z. Zhang, and W. X. Wang
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acpd-13-27243-2013, https://doi.org/10.5194/acpd-13-27243-2013, 2013
Revised manuscript not accepted
L. K. Xue, T. Wang, H. Guo, D. R. Blake, J. Tang, X. C. Zhang, S. M. Saunders, and W. X. Wang
Atmos. Chem. Phys., 13, 8551–8567, https://doi.org/10.5194/acp-13-8551-2013, https://doi.org/10.5194/acp-13-8551-2013, 2013
E. C. Browne, K.-E. Min, P. J. Wooldridge, E. Apel, D. R. Blake, W. H. Brune, C. A. Cantrell, M. J. Cubison, G. S. Diskin, J. L. Jimenez, A. J. Weinheimer, P. O. Wennberg, A. Wisthaler, and R. C. Cohen
Atmos. Chem. Phys., 13, 4543–4562, https://doi.org/10.5194/acp-13-4543-2013, https://doi.org/10.5194/acp-13-4543-2013, 2013
S. K. Akagi, R. J. Yokelson, I. R. Burling, S. Meinardi, I. Simpson, D. R. Blake, G. R. McMeeking, A. Sullivan, T. Lee, S. Kreidenweis, S. Urbanski, J. Reardon, D. W. T. Griffith, T. J. Johnson, and D. R. Weise
Atmos. Chem. Phys., 13, 1141–1165, https://doi.org/10.5194/acp-13-1141-2013, https://doi.org/10.5194/acp-13-1141-2013, 2013
Related subject area
Subject: Gases | Technique: Laboratory Measurement | Topic: Validation and Intercomparisons
A nitrate ion chemical-ionization atmospheric-pressure-interface time-of-flight mass spectrometer (NO3− ToFCIMS) sensitivity study
Two new 222Rn emanation sources – a comparison study
A traceable and continuous flow calibration method for gaseous elemental mercury at low ambient concentrations
Measurements of atmospheric C10–C15 biogenic volatile organic compounds (BVOCs) with sorbent tubes
Results of a long-term international comparison of greenhouse gas and isotope measurements at the Global Atmosphere Watch (GAW) Observatory in Alert, Nunavut, Canada
Colorimetric derivatization of ambient ammonia (NH3) for detection by long-path absorption photometry
Comparison of temperature-dependent calibration methods of an instrument to measure OH and HO2 radicals using laser-induced fluorescence spectroscopy
Controlled-release testing of the static chamber methodology for direct measurements of methane emissions
Development of an International System of Units (SI)-traceable transmission curve reference material to improve the quantitation and comparability of proton-transfer-reaction mass-spectrometry measurements
Reactive uptake coefficients for multiphase reactions determined by a dynamic chamber system
Influence of CO2 adsorption on cylinders and fractionation of CO2 and air during the preparation of a standard mixture
Detection of nitrous acid in the atmospheric simulation chamber SAPHIR using open-path incoherent broadband cavity-enhanced absorption spectroscopy and extractive long-path absorption photometry
Behavior of KCl sorbent traps and KCl trapping solutions used for atmospheric mercury speciation: stability and specificity
Intercomparison of O2 ∕ N2 ratio scales among AIST, NIES, TU, and SIO based on a round-robin exercise using gravimetric standard mixtures
Characterisation of gas reference materials for underpinning atmospheric measurements of stable isotopes of nitrous oxide
An indirect-calibration method for non-target quantification of trace gases applied to a time series of fourth-generation synthetic halocarbons at the Taunus Observatory (Germany)
Revision of the World Meteorological Organization Global Atmosphere Watch (WMO/GAW) CO2 calibration scale
Comparability of calibration strategies for measuring mercury concentrations in gas emission sources and the atmosphere
Characterizing water vapour concentration dependence of commercial cavity ring-down spectrometers for continuous on-site atmospheric water vapour isotope measurements in the tropics
Implementation of an incoherent broadband cavity-enhanced absorption spectroscopy technique in an atmospheric simulation chamber for in situ NO3 monitoring: characterization and validation for kinetic studies
A portable, robust, stable, and tunable calibration source for gas-phase nitrous acid (HONO)
Optimisation of a thermal desorption–gas chromatography–mass spectrometry method for the analysis of monoterpenes, sesquiterpenes and diterpenes
SIFT-MS optimization for atmospheric trace gas measurements at varying humidity
N2O isotopocule measurements using laser spectroscopy: analyzer characterization and intercomparison
An intercomparison of CH3O2 measurements by fluorescence assay by gas expansion and cavity ring-down spectroscopy within HIRAC (Highly Instrumented Reactor for Atmospheric Chemistry)
Photoacoustic measurement with infrared band-pass filters significantly overestimates NH3 emissions from cattle houses due to volatile organic compound (VOC) interferences
Isotopic characterization of nitrogen oxides (NOx), nitrous acid (HONO), and nitrate (pNO3−) from laboratory biomass burning during FIREX
A new laser-based and ultra-portable gas sensor for indoor and outdoor formaldehyde (HCHO) monitoring
Negligible influence of livestock contaminants and sampling system on ammonia measurements with cavity ring-down spectroscopy
Preparation of primary standard mixtures for atmospheric oxygen measurements with less than 1 µmol mol−1 uncertainty for oxygen molar fractions
The interference of tetrachloromethane in the measurement of benzene in the air by a gas chromatography–photoionisation detector (GC-PID)
Evaluation of cation exchange membrane performance under exposure to high Hg0 and HgBr2 concentrations
Gravimetrically prepared carbon dioxide standards in support of atmospheric research
The importance of cylinder passivation for preparation and long-term stability of multicomponent monoterpene primary reference materials
Dynamic–gravimetric preparation of metrologically traceable primary calibration standards for halogenated greenhouse gases
The water vapour self-continuum absorption in the infrared atmospheric windows: new laser measurements near 3.3 and 2.0 µm
Interlaboratory comparison of δ13C and δD measurements of atmospheric CH4 for combined use of data sets from different laboratories
Absolute, pressure-dependent validation of a calibration-free, airborne laser hygrometer transfer standard (SEALDH-II) from 5 to 1200 ppmv using a metrological humidity generator
An intercomparison of HO2 measurements by fluorescence assay by gas expansion and cavity ring-down spectroscopy within HIRAC (Highly Instrumented Reactor for Atmospheric Chemistry)
Abundances of isotopologues and calibration of CO2 greenhouse gas measurements
Intercomparison of two cavity ring-down spectroscopy analyzers for atmospheric 13CO2 ∕ 12CO2 measurement
Development and evaluation of a suite of isotope reference gases for methane in air
MIPAS database: new HNO3 line parameters at 7.6 µm validated with MIPAS satellite measurements
Twin-cuvette measurement technique for investigation of dry deposition of O3 and PAN to plant leaves under controlled humidity conditions
Gas adsorption and desorption effects on cylinders and their importance for long-term gas records
HOx radical chemistry in oxidation flow reactors with low-pressure mercury lamps systematically examined by modeling
ACTRIS non-methane hydrocarbon intercomparison experiment in Europe to support WMO GAW and EMEP observation networks
A method for stable carbon isotope ratio and concentration measurements of ambient aromatic hydrocarbons
Instrument intercomparison of glyoxal, methyl glyoxal and NO2 under simulated atmospheric conditions
Measuring acetic and formic acid by proton-transfer-reaction mass spectrometry: sensitivity, humidity dependence, and quantifying interferences
Stéphanie Alage, Vincent Michoud, Sergio Harb, Bénédicte Picquet-Varrault, Manuela Cirtog, Avinash Kumar, Matti Rissanen, and Christopher Cantrell
Atmos. Meas. Tech., 17, 4709–4724, https://doi.org/10.5194/amt-17-4709-2024, https://doi.org/10.5194/amt-17-4709-2024, 2024
Short summary
Short summary
Calibration exercises are essential for determining the accuracy of instruments. We performed calibrations on a NO3¯ ToFCIMS instrument to determine its sensitivity and linearity for detecting various organic compounds. Our findings revealed significant variability, over several orders of magnitude, in the calibration factors obtained. The results suggest that relying on a single calibration factor from H2SO4 for the quantification of all compounds detected by this technique is not appropriate.
Tanita J. Ballé, Stefan Röttger, Florian Mertes, Anja Honig, Petr Kovar, Petr P. S. Otáhal, and Annette Röttger
Atmos. Meas. Tech., 17, 2055–2065, https://doi.org/10.5194/amt-17-2055-2024, https://doi.org/10.5194/amt-17-2055-2024, 2024
Short summary
Short summary
Over 50 % of naturally occurring radiation exposure is due to 222Rn (progenies), but traceability of measurements to the International System of Units (SI) is lacking. To address this, two new 222Rn sources were developed to be used as calibration standards for reference instruments. These sources were investigated by comparing their estimated calibration factors for one instrument. Despite the small differences derived, all uncertainties are well within the intended target uncertainty of 10 %.
Teodor D. Andron, Warren T. Corns, Igor Živković, Saeed Waqar Ali, Sreekanth Vijayakumaran Nair, and Milena Horvat
Atmos. Meas. Tech., 17, 1217–1228, https://doi.org/10.5194/amt-17-1217-2024, https://doi.org/10.5194/amt-17-1217-2024, 2024
Short summary
Short summary
Atmospheric mercury monitoring is an important activity in order to model the global trajectory of this toxic element and to assess if certain areas are polluted or not in accordance to global guidelines. One of the analysers tested in this work is globally used in this regard due to its practicality compared with other devices. Because it is only calibrated by the manufacturer at very high concentrations, we wanted to see how it performs at ambient mercury concentrations.
Heidi Hellén, Toni Tykkä, Simon Schallhart, Evdokia Stratigou, Thérèse Salameh, and Maitane Iturrate-Garcia
Atmos. Meas. Tech., 17, 315–333, https://doi.org/10.5194/amt-17-315-2024, https://doi.org/10.5194/amt-17-315-2024, 2024
Short summary
Short summary
Even though online measurements of biogenic volatile organic compounds (BVOCs) are becoming more common, the use of sorbent tubes is expected to continue because they offer greater spatial coverage and no infrastructure is required for sampling. In this study the sorbent tube sampling method was optimized and evaluated for the determination of BVOCs in gas-phase samples. Tenax TA sorbent tubes were found to be suitable for the quantitative measurements of C10–C15 BVOCs.
Douglas E. J. Worthy, Michele K. Rauh, Lin Huang, Felix R. Vogel, Alina Chivulescu, Kenneth A. Masarie, Ray L. Langenfelds, Paul B. Krummel, Colin E. Allison, Andrew M. Crotwell, Monica Madronich, Gabrielle Pétron, Ingeborg Levin, Samuel Hammer, Sylvia Michel, Michel Ramonet, Martina Schmidt, Armin Jordan, Heiko Moossen, Michael Rothe, Ralph Keeling, and Eric J. Morgan
Atmos. Meas. Tech., 16, 5909–5935, https://doi.org/10.5194/amt-16-5909-2023, https://doi.org/10.5194/amt-16-5909-2023, 2023
Short summary
Short summary
Network compatibility is important for inferring greenhouse gas fluxes at global or regional scales. This study is the first assessment of the measurement agreement among seven individual programs within the World Meteorological Organization community. It compares co-located flask air measurements at the Alert Observatory in Canada over a 17-year period. The results provide stronger confidence in the uncertainty estimation while using those datasets in various data interpretation applications.
Shasha Tian, Kexin Zu, Huabin Dong, Limin Zeng, Keding Lu, and Qi Chen
Atmos. Meas. Tech., 16, 5525–5535, https://doi.org/10.5194/amt-16-5525-2023, https://doi.org/10.5194/amt-16-5525-2023, 2023
Short summary
Short summary
We developed an online NH3 monitoring system based on a selective colorimetric reaction and a long-path absorption photometer (SAC-LOPAP), which can run statically for a long time and be applied to the continuous online measurement of low concentrations of ambient air by optimizing the reaction conditions, adding a constant-temperature module and liquid flow controller. It is well suited for the investigation of the NH3 budget for urban to rural conditions in China.
Frank A. F. Winiberg, William J. Warman, Charlotte A. Brumby, Graham Boustead, Iustinian G. Bejan, Thomas H. Speak, Dwayne E. Heard, Daniel Stone, and Paul W. Seakins
Atmos. Meas. Tech., 16, 4375–4390, https://doi.org/10.5194/amt-16-4375-2023, https://doi.org/10.5194/amt-16-4375-2023, 2023
Short summary
Short summary
OH and HO2 are key reactive intermediates in the Earth's atmosphere. Accurate measurements in either the field or simulation chambers provide a good test for chemical mechanisms. Fluorescence techniques have the appropriate sensitivity for detection but require calibration. This paper compares different methods of calibration and specifically how calibration factors vary across a temperature range relevant to atmospheric and chamber determinations.
James P. Williams, Khalil El Hachem, and Mary Kang
Atmos. Meas. Tech., 16, 3421–3435, https://doi.org/10.5194/amt-16-3421-2023, https://doi.org/10.5194/amt-16-3421-2023, 2023
Short summary
Short summary
Methane is powerful greenhouse gas; thus, to reduce methane emissions, it is important that the methods used to measure methane are tested and validated. The static chamber method is an enclosure-based technique that directly measures methane emissions; however, it has not been thoroughly tested for the new variety of methane sources that it is currently being used for. We find that the static chamber method can accurately measure methane emissions under a wide range of methane emission rates.
David R. Worton, Sergi Moreno, Kieran O'Daly, and Rupert Holzinger
Atmos. Meas. Tech., 16, 1061–1072, https://doi.org/10.5194/amt-16-1061-2023, https://doi.org/10.5194/amt-16-1061-2023, 2023
Short summary
Short summary
Proton-transfer-reaction mass spectrometry is widely used in the environmental, health, and food and beverage sectors. As a result, there is a need for accurate and comparable measurements. In this work we have developed a 20-component gravimetrically prepared traceable primary reference material (gas standard in a high-pressure cylinder) to enable quantitative and comparable measurements. The accuracy of all components was better than 3 %–10 % with stabilities of better than 1–2 years.
Guo Li, Hang Su, Meng Li, Uwe Kuhn, Guangjie Zheng, Lei Han, Fengxia Bao, Ulrich Pöschl, and Yafang Cheng
Atmos. Meas. Tech., 15, 6433–6446, https://doi.org/10.5194/amt-15-6433-2022, https://doi.org/10.5194/amt-15-6433-2022, 2022
Short summary
Short summary
A large fraction of previous work using dynamic flow chambers was to quantify gas exchange in terms of flux or deposition/emission rate. Here, we extended the usage of this technique to examine uptake kinetics on sample surfaces. The good performance of the chamber system was validated. This technique can be further used for liquid samples and real atmospheric aerosol samples without complicated coating procedures, which complements the existing techniques in atmospheric kinetic studies.
Nobuyuki Aoki, Shigeyuki Ishidoya, Shohei Murayama, and Nobuhiro Matsumoto
Atmos. Meas. Tech., 15, 5969–5983, https://doi.org/10.5194/amt-15-5969-2022, https://doi.org/10.5194/amt-15-5969-2022, 2022
Short summary
Short summary
The CO2 concentration in a cylinder is affected by carbon dioxide (CO2) adsorption to a cylinder’s internal surface and fractionation of CO2 and air in the preparation of standard mixtures. We demonstrate that the effects make the CO2 molar fractions deviate in standard mixtures prepared by diluting pure CO2 with air three times. This means that CO2 standard gases are difficult to gravimetrically prepare through multistep dilution.
Sophie Dixneuf, Albert A. Ruth, Rolf Häseler, Theo Brauers, Franz Rohrer, and Hans-Peter Dorn
Atmos. Meas. Tech., 15, 945–964, https://doi.org/10.5194/amt-15-945-2022, https://doi.org/10.5194/amt-15-945-2022, 2022
Short summary
Short summary
Atmospheric chambers, like SAPHIR in Jülich (Germany), are used to experimentally simulate specific atmospheric scenarios to improve our understanding of the complex chemical reactions occurring in our atmospheres. These facilities hence require cutting-edge gas-sensing capabilities to detect trace gases at the lowest level and in a short time. One important trace gas is HONO, for which we custom-built an optical sensing setup, capable of detecting one HONO molecule in ~40 billion in 1 min.
Jan Gačnik, Igor Živković, Sergio Ribeiro Guevara, Radojko Jaćimović, Jože Kotnik, Gianmarco De Feo, Matthew A. Dexter, Warren T. Corns, and Milena Horvat
Atmos. Meas. Tech., 14, 6619–6631, https://doi.org/10.5194/amt-14-6619-2021, https://doi.org/10.5194/amt-14-6619-2021, 2021
Short summary
Short summary
Atmospheric mercury and knowledge of its transformations and processes are of great importance for lowering its anthropogenic emissions. To ensure that, it is crucial to have a tested and validated measurement procedure. Since this is not always the case, we performed experiments that provided insight into commonly used atmospheric mercury sampling methods. The results showed that some sampling methods are unsuitable, and some are useful if we consider the results obtained from this work.
Nobuyuki Aoki, Shigeyuki Ishidoya, Yasunori Tohjima, Shinji Morimoto, Ralph F. Keeling, Adam Cox, Shuichiro Takebayashi, and Shohei Murayama
Atmos. Meas. Tech., 14, 6181–6193, https://doi.org/10.5194/amt-14-6181-2021, https://doi.org/10.5194/amt-14-6181-2021, 2021
Short summary
Short summary
Observing the minimal long-term change in atmospheric O2 molar fraction combined with CO2 observation enables us to estimate terrestrial biospheric and oceanic CO2 uptakes separately. In this study, we firstly identified the span offset between the laboratory O2 scales using our developed high-precision standard mixtures, suggesting that the result may allow us to estimate terrestrial biospheric and oceanic CO2 uptakes precisely.
Ruth E. Hill-Pearce, Aimee Hillier, Eric Mussell Webber, Kanokrat Charoenpornpukdee, Simon O'Doherty, Joachim Mohn, Christoph Zellweger, David R. Worton, and Paul J. Brewer
Atmos. Meas. Tech., 14, 5447–5458, https://doi.org/10.5194/amt-14-5447-2021, https://doi.org/10.5194/amt-14-5447-2021, 2021
Short summary
Short summary
There is currently a need for gas reference materials with well-characterised delta values for monitoring N2O amount fractions. We present work towards the preparation of gas reference materials for calibration of in-field monitoring equipment, which target the WMO-GAW data quality objectives for comparability of amount fraction and demonstrate the stability of δ15Nα, δ15Nβ and δ18O values with pressure and effects of cylinder passivation.
Fides Lefrancois, Markus Jesswein, Markus Thoma, Andreas Engel, Kieran Stanley, and Tanja Schuck
Atmos. Meas. Tech., 14, 4669–4687, https://doi.org/10.5194/amt-14-4669-2021, https://doi.org/10.5194/amt-14-4669-2021, 2021
Short summary
Short summary
Synthetic halocarbons can contribute to stratospheric ozone depletion or to climate change. In many applications they have been replaced over the last years. The presented non-target analysis shows an application approach to quantify those replacements retrospectively, using recorded data of air measurements with gas chromatography coupled to time-of-flight mass spectrometry. We focus on the retrospective analysis of the fourth-generation halocarbons, detected at Taunus Observatory in Germany.
Bradley D. Hall, Andrew M. Crotwell, Duane R. Kitzis, Thomas Mefford, Benjamin R. Miller, Michael F. Schibig, and Pieter P. Tans
Atmos. Meas. Tech., 14, 3015–3032, https://doi.org/10.5194/amt-14-3015-2021, https://doi.org/10.5194/amt-14-3015-2021, 2021
Short summary
Short summary
We have recently revised the carbon dioxide calibration scale used by numerous laboratories that measure atmospheric CO2. The revision follows from an improved understanding of the manometric method used to determine the absolute amount of CO2 in an atmospheric air sample. The new scale is 0.18 μmol mol−1 (ppm) greater than the previous scale at 400 ppm CO2. While this difference is small in relative terms (0.045 %), it is significant in terms of atmospheric monitoring.
Iris de Krom, Wijnand Bavius, Ruben Ziel, Elizabeth A. McGhee, Richard J. C. Brown, Igor Živković, Jan Gačnik, Vesna Fajon, Jože Kotnik, Milena Horvat, and Hugo Ent
Atmos. Meas. Tech., 14, 2317–2326, https://doi.org/10.5194/amt-14-2317-2021, https://doi.org/10.5194/amt-14-2317-2021, 2021
Short summary
Short summary
To demonstrate the robustness and comparability of the novel primary mercury gas standard, the results of comparisons are presented with current calibration methods maintained, using the bell jar in combination with the Dumarey equation or NIST liquid standard reference material. The results show that the primary standard and the NIST reference material are comparable, whereas a difference of −8 % exists between results traceable to the primary standard and the Dumarey equation.
Shujiro Komiya, Fumiyoshi Kondo, Heiko Moossen, Thomas Seifert, Uwe Schultz, Heike Geilmann, David Walter, and Jost V. Lavric
Atmos. Meas. Tech., 14, 1439–1455, https://doi.org/10.5194/amt-14-1439-2021, https://doi.org/10.5194/amt-14-1439-2021, 2021
Short summary
Short summary
The Amazon basin influences the atmospheric and hydrological cycles on local to global scales. To better understand how, we plan to perform continuous on-site measurements of the stable isotope composition of atmospheric water vapour. For making accurate on-site observations possible, we have investigated the performance of two commercial analysers and determined the best calibration strategy. Well calibrated, both analysers will allow us to record natural signals in the Amazon rainforest.
Axel Fouqueau, Manuela Cirtog, Mathieu Cazaunau, Edouard Pangui, Pascal Zapf, Guillaume Siour, Xavier Landsheere, Guillaume Méjean, Daniele Romanini, and Bénédicte Picquet-Varrault
Atmos. Meas. Tech., 13, 6311–6323, https://doi.org/10.5194/amt-13-6311-2020, https://doi.org/10.5194/amt-13-6311-2020, 2020
Short summary
Short summary
An incoherent broadband cavity-enhanced absorption spectroscopy (IBBCEAS) technique has been developed for the in situ monitoring of NO3 radicals in the CSA simulation chamber at LISA. The optical cavity allows a high sensitivity for NO3 detection up to 6 ppt for an integration time of 10 s. The technique is now fully operational and can be used to determine rate constants for fast reactions involving complex volatile organic compounds (with rate constants up to 10−10 cm3 molecule−1 s−1).
Melodie Lao, Leigh R. Crilley, Leyla Salehpoor, Teles C. Furlani, Ilann Bourgeois, J. Andrew Neuman, Andrew W. Rollins, Patrick R. Veres, Rebecca A. Washenfelder, Caroline C. Womack, Cora J. Young, and Trevor C. VandenBoer
Atmos. Meas. Tech., 13, 5873–5890, https://doi.org/10.5194/amt-13-5873-2020, https://doi.org/10.5194/amt-13-5873-2020, 2020
Short summary
Short summary
Nitrous acid (HONO) is a key intermediate in the generation of oxidants and fate of nitrogen oxides in the atmosphere. High-purity calibration sources that produce stable atmospherically relevant levels under field conditions have not been made to date, reducing measurement accuracy. In this study a simple salt-coated tube humidified with water vapor is demonstrated to produce pure stable low levels of HONO, with modifications allowing the generation of higher amounts.
Aku Helin, Hannele Hakola, and Heidi Hellén
Atmos. Meas. Tech., 13, 3543–3560, https://doi.org/10.5194/amt-13-3543-2020, https://doi.org/10.5194/amt-13-3543-2020, 2020
Short summary
Short summary
A thermal desorption–gas chromatography–mass spectrometry method following sorbent tube sampling was developed for the determination of terpenes in gas-phase samples. The main focus was on the analysis of diterpenes, which have been limited in study in gas-phase samples. The analytical figures of merit were fit for purpose (e.g. quantitation limits <10 pptv and reproducibility <10 % for terpenes). Diterpenes could be detected and identified in emissions from spruce and pine samples.
Ann-Sophie Lehnert, Thomas Behrendt, Alexander Ruecker, Georg Pohnert, and Susan E. Trumbore
Atmos. Meas. Tech., 13, 3507–3520, https://doi.org/10.5194/amt-13-3507-2020, https://doi.org/10.5194/amt-13-3507-2020, 2020
Short summary
Short summary
Volatile organic compounds (VOCs) like scents can appear and disappear quickly. For example, when a bug starts on a tree, the tree releases VOCs that warn the trees around him. Thus, one needs instruments measuring their concentration in real time and identify which VOC is measured. In our study, we compared two instruments doing that, PTR-MS and SIFT-MS. Both work similarly, but we found that the PTR-MS can measure lower concentrations, but the SIFT-MS can identify VOCs better.
Stephen J. Harris, Jesper Liisberg, Longlong Xia, Jing Wei, Kerstin Zeyer, Longfei Yu, Matti Barthel, Benjamin Wolf, Bryce F. J. Kelly, Dioni I. Cendón, Thomas Blunier, Johan Six, and Joachim Mohn
Atmos. Meas. Tech., 13, 2797–2831, https://doi.org/10.5194/amt-13-2797-2020, https://doi.org/10.5194/amt-13-2797-2020, 2020
Short summary
Short summary
The latest commercial laser spectrometers have the potential to revolutionize N2O isotope analysis. However, to do so, they must be able to produce trustworthy data. Here, we test the performance of widely used laser spectrometers for ambient air applications and identify instrument-specific dependencies on gas matrix and trace gas concentrations. We then provide a calibration workflow to facilitate the operation of these instruments in order to generate reproducible and accurate data.
Lavinia Onel, Alexander Brennan, Michele Gianella, James Hooper, Nicole Ng, Gus Hancock, Lisa Whalley, Paul W. Seakins, Grant A. D. Ritchie, and Dwayne E. Heard
Atmos. Meas. Tech., 13, 2441–2456, https://doi.org/10.5194/amt-13-2441-2020, https://doi.org/10.5194/amt-13-2441-2020, 2020
Dezhao Liu, Li Rong, Jesper Kamp, Xianwang Kong, Anders Peter S. Adamsen, Albarune Chowdhury, and Anders Feilberg
Atmos. Meas. Tech., 13, 259–272, https://doi.org/10.5194/amt-13-259-2020, https://doi.org/10.5194/amt-13-259-2020, 2020
Jiajue Chai, David J. Miller, Eric Scheuer, Jack Dibb, Vanessa Selimovic, Robert Yokelson, Kyle J. Zarzana, Steven S. Brown, Abigail R. Koss, Carsten Warneke, and Meredith Hastings
Atmos. Meas. Tech., 12, 6303–6317, https://doi.org/10.5194/amt-12-6303-2019, https://doi.org/10.5194/amt-12-6303-2019, 2019
Short summary
Short summary
Isotopic analysis offers a potential tool to distinguish between sources and interpret transformation pathways of atmospheric species. We applied recently developed techniques in our lab to characterize the isotopic composition of reactive nitrogen species (NOx, HONO, HNO3, pNO3-) in fresh biomass burning emissions. Intercomparison with other techniques confirms the suitability of our methods, allowing for future applications of our techniques in a variety of environments.
Joshua D. Shutter, Norton T. Allen, Thomas F. Hanisco, Glenn M. Wolfe, Jason M. St. Clair, and Frank N. Keutsch
Atmos. Meas. Tech., 12, 6079–6089, https://doi.org/10.5194/amt-12-6079-2019, https://doi.org/10.5194/amt-12-6079-2019, 2019
Short summary
Short summary
A new mid-infrared and ultra-portable formaldehyde (HCHO) sensor from Aeris Technologies is characterized and evaluated against well-established laser-induced fluorescence (LIF) instrumentation. The Aeris sensor displays linear behavior (R squared > 0.94) and shows good agreement with LIF instruments. While the compact sensor is not currently a replacement for the most sensitive research-grade instrumentation available, its sub-ppbv precision is sufficient for indoor and outdoor HCHO monitoring.
Jesper Nørlem Kamp, Albarune Chowdhury, Anders Peter S. Adamsen, and Anders Feilberg
Atmos. Meas. Tech., 12, 2837–2850, https://doi.org/10.5194/amt-12-2837-2019, https://doi.org/10.5194/amt-12-2837-2019, 2019
Short summary
Short summary
We tested the performance of a cavity ring-down spectroscopy (CRDS) instrument from Picarro for measuring ammonia. Interference tests with 10 volatile organic compounds (VOCs) were conducted to find potential interference of these VOCs. Calibrations show excellent linearity over a large dynamic range of NH3 concentrations. There is negligible interference from humidity and few of the tested VOCs. Overall, the CRDS system performs well with only negligible influence from other compounds.
Nobuyuki Aoki, Shigeyuki Ishidoya, Nobuhiro Matsumoto, Takuro Watanabe, Takuya Shimosaka, and Shohei Murayama
Atmos. Meas. Tech., 12, 2631–2646, https://doi.org/10.5194/amt-12-2631-2019, https://doi.org/10.5194/amt-12-2631-2019, 2019
Short summary
Short summary
Observation of atmospheric O2 requires highly precise standard gas mixtures with uncertainty of less than 1 ppm for the O2 mole fraction or 5 per meg for O2 / N2. The uncertainty had not been achieved due unknown uncertainty factors in mass determination of the filled source gases. We first developed the primary standard mixtures with 1 ppm for the O2 mole fraction or 5 per meg by identifying and reducing the unknown uncertainty factors.
Cristina Romero-Trigueros, María Esther González, Marta Doval Miñarro, and Enrique González Ferradás
Atmos. Meas. Tech., 12, 1685–1695, https://doi.org/10.5194/amt-12-1685-2019, https://doi.org/10.5194/amt-12-1685-2019, 2019
Short summary
Short summary
Determining benzene in ambient air is mandatory in the European Union. The reference measuring technique is by gas chromatography (GC), and a photometric ionisation detector is recommended. This study shows that the simultaneous presence of benzene and tetrachloromethane causes a significant decrease in GC–photoionisation detector (GC-PID) readings. Given the importance of this behaviour, a possible mechanism was proposed. This study highlights the uncertainty of measuring benzene with a GC-PID.
Matthieu B. Miller, Sarrah M. Dunham-Cheatham, Mae Sexauer Gustin, and Grant C. Edwards
Atmos. Meas. Tech., 12, 1207–1217, https://doi.org/10.5194/amt-12-1207-2019, https://doi.org/10.5194/amt-12-1207-2019, 2019
Short summary
Short summary
This study was undertaken to demonstrate that a cation exchange membrane (CEM) material used for sampling reactive mercury (RM) does not possess an inherent tendency to collect gaseous elemental mercury (GEM). Using a custom-built mercury vapor permeation system, we found that the CEM material has a very small GEM uptake of approximately 0.004 %, too small to create a significant artifact. We also found that a representative RM compound was collected by the CEM material with high efficiency.
Bradley D. Hall, Andrew M. Crotwell, Benjamin R. Miller, Michael Schibig, and James W. Elkins
Atmos. Meas. Tech., 12, 517–524, https://doi.org/10.5194/amt-12-517-2019, https://doi.org/10.5194/amt-12-517-2019, 2019
Short summary
Short summary
We have used a one-step method for gravimetric preparation of CO2-in-air standards in aluminum cylinders. We consider both adsorption to stainless steel surfaces used in the transfer of highly pure CO2 and adsorption of CO2 to cylinder walls. This work compliments ongoing efforts to support atmospheric monitoring of CO2.
Nicholas D. C. Allen, David R. Worton, Paul J. Brewer, Celine Pascale, and Bernhard Niederhauser
Atmos. Meas. Tech., 11, 6429–6438, https://doi.org/10.5194/amt-11-6429-2018, https://doi.org/10.5194/amt-11-6429-2018, 2018
Short summary
Short summary
This paper investigates the stability of trace level static terpene primary reference materials (PRMs) and how the choice of passivation affects this process. For the first time, sampling canisters that can be used in the field are tested and demonstrated to be suitable for terpene mixtures. The PRMs were compared against a novel dynamic generator system based on dilution of pure limonene vapour emitted from a permeation tube. The effect of cylinder pressure and decanting are also investigated.
Myriam Guillevic, Martin K. Vollmer, Simon A. Wyss, Daiana Leuenberger, Andreas Ackermann, Céline Pascale, Bernhard Niederhauser, and Stefan Reimann
Atmos. Meas. Tech., 11, 3351–3372, https://doi.org/10.5194/amt-11-3351-2018, https://doi.org/10.5194/amt-11-3351-2018, 2018
Short summary
Short summary
We present new primary calibration scales for five halogenated greenhouse gases. The preparation method, newly applied to halocarbons, is dynamic and gravimetric
and allows the generation of reference gas mixtures at near-ambient levels (pmol mol−1). Each prepared molar fraction is traceable to the
realisation of SI units (International System of Units) and is assigned an uncertainty estimate following international guidelines.
Loic Lechevallier, Semen Vasilchenko, Roberto Grilli, Didier Mondelain, Daniele Romanini, and Alain Campargue
Atmos. Meas. Tech., 11, 2159–2171, https://doi.org/10.5194/amt-11-2159-2018, https://doi.org/10.5194/amt-11-2159-2018, 2018
Short summary
Short summary
The amplitude, the temperature dependence, and the physical origin of the water vapour absorption continuum are a long standing issue in molecular spectroscopy with a direct impact in atmospheric and planetary sciences. Using highly sensitive laser spectrometers, the water self continuum has been determined with unprecedented sensitivity in infrared atmospheric transparency windows.
Taku Umezawa, Carl A. M. Brenninkmeijer, Thomas Röckmann, Carina van der Veen, Stanley C. Tyler, Ryo Fujita, Shinji Morimoto, Shuji Aoki, Todd Sowers, Jochen Schmitt, Michael Bock, Jonas Beck, Hubertus Fischer, Sylvia E. Michel, Bruce H. Vaughn, John B. Miller, James W. C. White, Gordon Brailsford, Hinrich Schaefer, Peter Sperlich, Willi A. Brand, Michael Rothe, Thomas Blunier, David Lowry, Rebecca E. Fisher, Euan G. Nisbet, Andrew L. Rice, Peter Bergamaschi, Cordelia Veidt, and Ingeborg Levin
Atmos. Meas. Tech., 11, 1207–1231, https://doi.org/10.5194/amt-11-1207-2018, https://doi.org/10.5194/amt-11-1207-2018, 2018
Short summary
Short summary
Isotope measurements are useful for separating different methane sources. However, the lack of widely accepted standards and calibration methods for stable carbon and hydrogen isotopic ratios of methane in air has caused significant measurement offsets among laboratories. We conducted worldwide interlaboratory comparisons, surveyed the literature and assessed them systematically. This study may be of help in future attempts to harmonize data sets of isotopic composition of atmospheric methane.
Bernhard Buchholz and Volker Ebert
Atmos. Meas. Tech., 11, 459–471, https://doi.org/10.5194/amt-11-459-2018, https://doi.org/10.5194/amt-11-459-2018, 2018
Short summary
Short summary
This paper describes the absolute validation of the novel, calibration-free SEALDH-II hygrometer at a traceable humidity generator. During 23 days of permanent operation, 15 H2O mole fractions levels (5–1200 ppmv) at 6 gas pressures (65–950 hPa) were validated. With this validation, SEALDH-II is the first metrologically validated humidity transfer standard which links several scientific airborne and laboratory measurement campaigns to the international metrological water vapor scale.
Lavinia Onel, Alexander Brennan, Michele Gianella, Grace Ronnie, Ana Lawry Aguila, Gus Hancock, Lisa Whalley, Paul W. Seakins, Grant A. D. Ritchie, and Dwayne E. Heard
Atmos. Meas. Tech., 10, 4877–4894, https://doi.org/10.5194/amt-10-4877-2017, https://doi.org/10.5194/amt-10-4877-2017, 2017
Short summary
Short summary
Hydroperoxy (HO2) radicals are key intermediates participating in a rapid chemical cycling at the centre of the tropospheric oxidation. Fluorescence assay by gas expansion (FAGE) technique is the most commonly used for the HO2 measurements in the atmosphere. However, FAGE is an indirect technique, requiring calibration. This work finds a good agreement between the indirect FAGE method and the direct cavity ring-down spectroscopy method and hence validates FAGE and the FAGE calibration method.
Pieter P. Tans, Andrew M. Crotwell, and Kirk W. Thoning
Atmos. Meas. Tech., 10, 2669–2685, https://doi.org/10.5194/amt-10-2669-2017, https://doi.org/10.5194/amt-10-2669-2017, 2017
Short summary
Short summary
We describe a new CO2 calibration system for the Central Calibration Laboratory of the World Meteorological Organization Global Atmosphere Watch program. The system uses two laser spectroscopic instruments to measure the three major CO2 isotopologues individually. We account for isotopic differences between standards in the calibration hierarchy when assigning CO2 mole fraction, eliminating bias due to variations in the isotopic composition.
Jiaping Pang, Xuefa Wen, Xiaomin Sun, and Kuan Huang
Atmos. Meas. Tech., 9, 3879–3891, https://doi.org/10.5194/amt-9-3879-2016, https://doi.org/10.5194/amt-9-3879-2016, 2016
Peter Sperlich, Nelly A. M. Uitslag, Jürgen M. Richter, Michael Rothe, Heike Geilmann, Carina van der Veen, Thomas Röckmann, Thomas Blunier, and Willi A. Brand
Atmos. Meas. Tech., 9, 3717–3737, https://doi.org/10.5194/amt-9-3717-2016, https://doi.org/10.5194/amt-9-3717-2016, 2016
Short summary
Short summary
Isotope measurements in atmospheric CH4 are performed since more than 3 decades. However, standard gases to harmonize global measurements are not available to this day. We designed two methods to calibrate a suite of 8 CH4 gases with a wide range in isotopic composition to the VPDB and VSMOW scales with high precision and accuracy. Synthetic air mixtures with ~2 ppm of calibrated CH4 can be provided to the community by the ISOLAB of the Max Planck Institute for Biogeochemistry in Jena, Germany.
Agnès Perrin, Jean-Marie Flaud, Marco Ridolfi, Jean Vander Auwera, and Massimo Carlotti
Atmos. Meas. Tech., 9, 2067–2076, https://doi.org/10.5194/amt-9-2067-2016, https://doi.org/10.5194/amt-9-2067-2016, 2016
Short summary
Short summary
Improved line positions and intensities have been generated for the 7.6 µm spectral region of nitric acid, relying on a recent laboratory reinvestigation and comparisons of HNO3 volume mixing ratios retrieved from Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) radiances in the 11 and 7.6 µm regions. The much improved consistency of line intensities in both regions will make it possible to use them simultaneously to retrieve atmospheric HNO3.
Shang Sun, Alexander Moravek, Lisa von der Heyden, Andreas Held, Matthias Sörgel, and Jürgen Kesselmeier
Atmos. Meas. Tech., 9, 599–617, https://doi.org/10.5194/amt-9-599-2016, https://doi.org/10.5194/amt-9-599-2016, 2016
Short summary
Short summary
We present a dynamic twin-cuvette system for quantifying the trace gas exchange fluxes between plants and the atmosphere under controlled temperature, light, and humidity conditions. We found out that at a relative humidity of 40 %, the deposition velocity ratio of O3 and PAN was determined to be 0.45. At that humidity, the O3-deposition to the plant leaves was found to be only controlled by leaf stomata. For PAN, an additional resistance inhibited the uptake of PAN by the leaves.
M. C. Leuenberger, M. F. Schibig, and P. Nyfeler
Atmos. Meas. Tech., 8, 5289–5299, https://doi.org/10.5194/amt-8-5289-2015, https://doi.org/10.5194/amt-8-5289-2015, 2015
Short summary
Short summary
Adsorption/desorption effects of trace gases in gas cylinders were investigated. Our measurements indicate a rather strong effect on steel cylinders for CO2 that becomes easily visible through enhanced concentrations for low (<20 bars) gas pressure. Much smaller effects are observed for CO and CH4. Significantly smaller effects are measured for all gas species investigated on aluminium cylinders. Careful selection of gas cylinders for high-precision calibration purposes is recommended.
Z. Peng, D. A. Day, H. Stark, R. Li, J. Lee-Taylor, B. B. Palm, W. H. Brune, and J. L. Jimenez
Atmos. Meas. Tech., 8, 4863–4890, https://doi.org/10.5194/amt-8-4863-2015, https://doi.org/10.5194/amt-8-4863-2015, 2015
C. C. Hoerger, A. Claude, C. Plass-Duelmer, S. Reimann, E. Eckart, R. Steinbrecher, J. Aalto, J. Arduini, N. Bonnaire, J. N. Cape, A. Colomb, R. Connolly, J. Diskova, P. Dumitrean, C. Ehlers, V. Gros, H. Hakola, M. Hill, J. R. Hopkins, J. Jäger, R. Junek, M. K. Kajos, D. Klemp, M. Leuchner, A. C. Lewis, N. Locoge, M. Maione, D. Martin, K. Michl, E. Nemitz, S. O'Doherty, P. Pérez Ballesta, T. M. Ruuskanen, S. Sauvage, N. Schmidbauer, T. G. Spain, E. Straube, M. Vana, M. K. Vollmer, R. Wegener, and A. Wenger
Atmos. Meas. Tech., 8, 2715–2736, https://doi.org/10.5194/amt-8-2715-2015, https://doi.org/10.5194/amt-8-2715-2015, 2015
Short summary
Short summary
The performance of 20 European laboratories involved in long-term non-methane hydrocarbon (NMHC) measurements was assessed with respect to ACTRIS and GAW data quality objectives. The participants were asked to measure both a 30-component NMHC mixture in nitrogen and whole air. The NMHCs were analysed either by GC-FID or GC-MS. Most systems performed well for the NMHC in nitrogen, whereas in air more scatter was observed. Reasons for this are explained in the paper.
A. Kornilova, S. Moukhtar, M. Saccon, L. Huang, W. Zhang, and J. Rudolph
Atmos. Meas. Tech., 8, 2301–2313, https://doi.org/10.5194/amt-8-2301-2015, https://doi.org/10.5194/amt-8-2301-2015, 2015
Short summary
Short summary
A technique for compound specific analysis of stable carbon isotope ratios and concentration of ambient volatile organic compounds (VOC) is presented. It is based on selective VOC sampling onto adsorbent filled cartridges. Examples of measurements conducted demonstrate that the ability to make accurate measurements in air with low VOC mixing ratios is important to avoid bias from an overrepresentation of samples that are strongly impacted by recent emissions.
R. Thalman, M. T. Baeza-Romero, S. M. Ball, E. Borrás, M. J. S. Daniels, I. C. A. Goodall, S. B. Henry, T. Karl, F. N. Keutsch, S. Kim, J. Mak, P. S. Monks, A. Muñoz, J. Orlando, S. Peppe, A. R. Rickard, M. Ródenas, P. Sánchez, R. Seco, L. Su, G. Tyndall, M. Vázquez, T. Vera, E. Waxman, and R. Volkamer
Atmos. Meas. Tech., 8, 1835–1862, https://doi.org/10.5194/amt-8-1835-2015, https://doi.org/10.5194/amt-8-1835-2015, 2015
Short summary
Short summary
Measurements of α-dicarbonyl compounds, like glyoxal (CHOCHO) and methyl glyoxal (CH3C(O)CHO), are informative about the rate of hydrocarbon oxidation, oxidative capacity, and secondary organic aerosol (SOA) formation in the atmosphere. We have compared nine instruments and seven techniques to measure α-dicarbonyl, using simulation chamber facilities in the US and Europe. We assess our understanding of calibration, precision, accuracy and detection limits, as well as possible sampling biases.
M. Baasandorj, D. B. Millet, L. Hu, D. Mitroo, and B. J. Williams
Atmos. Meas. Tech., 8, 1303–1321, https://doi.org/10.5194/amt-8-1303-2015, https://doi.org/10.5194/amt-8-1303-2015, 2015
Cited articles
Andersen, K. B., Hansen, M. J., and Feilberg, A.: Minimisation of artefact
formation of dimethyl disulphide during sampling and analysis of
methanethiol in air using solid sorbent materials, J. Chromatogr. A, 1245,
24–31, 2012.
Andreae, M. O.: Ocean-Atmosphere interactions in the global biogeochemical
sulfur cycle, Mar. Chem., 30, 1–29, 1990.
Andreae, M. O., Ferek, R. J., Bermond, F., Byrd, K. P., Engstrom, R. T.,
Hardin, S., Houmere, P. D., Lemarrec, F., Raemdonck, H., and Chatfield, R.
B.: Dimethyl sulfide in the marine atmosphere, J. Geophys. Res., 90,
2891–2900, 1985.
Andreae, T. W., Andreae, M. O., Bingemer, H. G., and Leck, C.: Measurements
of dimethyl sulfide and H2S over the western north Atlantic and the
tropical Atlantic, J. Geophys. Res., 98, 23389–23396, 1993.
Aneja, V. P.: Natural sulfur emissions into the atmosphere, J. Air Waste Manage., 40, 469–476, 1990.
Aprea, E., Biasioli, F., Carlin, S., Versini, G., Mark, T. D., and Gasperi,
F.: Rapid white truffle headspace analysis by proton transfer reaction mass
spectrometry and comparison with solid-phase microextraction coupled with
gas chromatography/mass spectrometry, Rapid Commun. Mass Sp., 21,
2564–2572, 2007.
Arnold, S. T., Thomas, J. M., and Viggiano, A. A.: Reactions of
H3O+(H2O)(n) and
H+(H2O)(n)(CH3COCH3)(m) with
CH3SCH3, Int. J. Mass Spectrom., 180, 243–251, 1998.
Barnes, I., Bastian, V., and Becker, K. H.: Kinetics and mechanisms of the
reaction of OH radicals with dimethyl sulfide, Int. J. Chem. Kinet., 20,
415–431, 1988.
Barnes, I., Becker, K. H., and Mihalopoulos, N.: An FTIR product study of
the photooxidation of dimethyl disulfide, J. Atmos. Chem., 18, 267–289,
1994.
Barnes, I., Hjorth, J., and Mihalopoulos, N.: Dimethyl sulfide and dimethyl
sulfoxide and their oxidation in the atmosphere, Chem. Rev., 106, 940–975,
2006.
Bashkova, S., Bagreev, A., and Bandosz, T. J.: Adsorption/oxidation of
CH3SH on activated carbons containing nitrogen, Langmuir, 19,
6115–6121, 2003.
Bates, T. S., Lamb, B. K., Guenther, A., Dignon, J., and Stoiber, R. E.:
Sulfur emissions to the atmosphere from natural sources, J. Atmos. Chem., 14,
315–337, 1992.
Berglund, M. and Wieser, M. E.: Isotopic compositions of the elements 2009
(IUPAC Technical Report), Pure Appl. Chem., 83, 397–410, 2011.
Berndt, T. and Richters, S.: Products of the reaction of OH radicals with
dimethyl sulphide in the absence of NOx: Experiment and simulation, Atmos.
Environ., 47, 316–322, 2012.
Berresheim, H., Andreae, M. O., Ayers, G. P., Gillett, R. W., Merrill, J.
T., Davis, V. J., and Chameides, W. L.: Airborne measurements of
dimethylsulfide, sulfur dioxide and aerosol Ions over the southern ocean of
Australia, J. Atmos. Chem., 10, 341–370, 1990.
Beyersdorf, A. J., Blake, D. R., Swanson, A., Meinardi, S., Rowland, F. S.,
and Davis, D.: Abundances and variability of tropospheric volatile organic
compounds at the South Pole and other Antarctic locations, Atmos. Environ.,
44, 4565–4574, 2010.
Blake, D. R., Smith, T. W., Chen, T. Y., Whipple, W. J., and Rowland, F. S.:
Effects of biomass burning on summertime nonmethane hydrocarbon
concentrations in the canadian wetlands, J. Geophys. Res., 99, 1699–1719,
1994.
Blake, R. S., Monks, P. S., and Ellis, A. M.: Proton-transfer reaction mass
spectrometry, Chem. Rev., 109, 861–896, 2009.
Blunden, J., Aneja, V. P., and Lonneman, W. A.: Characterization of
non-methane volatile organic compounds at swine facilities in eastern North
Carolina, Atmos. Environ., 39, 6707–6718, 2005.
Brown, P., Watts, P., Mark, T. D., and Mayhew, C. A.: Proton transfer
reaction mass spectrometry investigations on the effects of reduced electric
field and reagent ion internal energy on product ion branching ratios for a
series of saturated alcohols, Int. J. Mass Spectrom., 294, 103–111, 2010.
Buhr, K., van Ruth, S., and Delahunty, C.: Analysis of volatile flavour
compounds by proton-transfer reaction mass spectrometry: Fragmentation
patterns and discrimination between isobaric and isomeric compounds, Int. J.
Mass Spectrom., 221, 1–7, 2002.
Burnett, W. E.: Air pollution from animal wastes – Determination of malodors
by gas chromatographic and organoleptic techniques, Environ. Sci. Technol.,
3, 744–749, 1969.
Bzdek, B. R. and Johnston, M. V.: New particle formation and growth in the
troposphere, Anal. Chem., 82, 7871–7878, 2010.
Capaldo, K. P. and Pandis, S. N.: Dimethylsulfide chemistry in the remote
marine atmosphere: Evaluation and sensitivity analysis of available
mechanisms, J. Geophys. Res., 102, 23251–23267, 1997.
Cappellin, L., Probst, M., Limtrakul, J., Biasioli, F., Schuhfried, E.,
Soukoulis, C., Mark, T. D., and Gasperi, F.: Proton transfer reaction rate
coefficients between H3O+ and some sulphur compounds, Int. J. Mass
Spectrom., 295, 43–48, 2010.
Chin, H. W. and Lindsay, R. C.: Ascorbate and transition-metal mediation of
methanethiol oxidation to dimethyl disulfide and dimethyl trisulfide, Food
Chem., 49, 387–392, 1994.
Christian, T. J., Kleiss, B., Yokelson, R. J., Holzinger, R., Crutzen, P.
J., Hao, W. M., Shirai, T., and Blake, D. R.: Comprehensive laboratory
measurements of biomass-burning emissions: 2. First intercomparison of
open-path FTIR, PTR-MS, and GC- MS/FID/ECD, J. Geophys. Res., 109, D02311,
https://doi.org/02310.01029/02003JD003874, 2004.
Colman, J. J., Swanson, A. L., Meinardi, S., Sive, B. C., Blake, D. R., and
Rowland, F. S.: Description of the analysis of a wide range of volatile
organic compounds in whole air samples collected during PEM-Tropics A and B,
Anal. Chem., 73, 3723–3731, 2001.
Crutzen, P. J., Williams, J., Poschl, U., Hoor, P., Fischer, H., Warneke,
C., Holzinger, R., Hansel, A., Lindinger, W., Scheeren, B., and Lelieveld,
J.: High spatial and temporal resolution measurements of primary organics
and their oxidation products over the tropical forests of Surinam, Atmos.
Environ., 34, 1161–1165, 2000.
Davison, B. and Hewitt, C. N.: Elucidation of the tropospheric reactions of
biogenic sulfur species from a field measurement campaign in New Scotland,
Chemosphere, 28, 543–557, 1994.
Dawson, M. L., Varner, M. E., Perraud, V., Ezell, M. J., Gerber, R. B., and
Finlayson-Pitts, B. J.: Simplified mechanism for new particle formation from
methanesulfonic acid, amines and water via experiments and ab initio calculations,
P. Natl. Acad. Sci. USA, 109, 18719–18724, 2012.
de Bruyn, W. J., Harvey, M., Cainey, J. M., and Saltzman, E. S.: DMS and
SO2 at Baring Head, New Zealand: Implications for the yield of SO2
from DMS, J. Atmos. Chem., 41, 189–209, 2002.
de Gouw, J. and Carsten, W.: Measurements of volatile organic compounds in
the Earth's atmosphere using proton-transfer-reaction mass spectrometry,
Mass Spectrom. Rev., 26, 223–257, 2007.
Devai, I. and Delaune, R. D.: Changes in reduced gaseous sulfur-compounds
collected in glass gas sampling bulbs, Anal. Lett., 27, 2403–2411, 1994.
Dockery, D. W., Pope, C. A., Xu, X. P., Spengler, J. D., Ware, J. H., Fay,
M. E., Ferris, B. G., and Speizer, F. E.: An Association between
air-pollution and mortality in six United-States cities, New Engl. J. Med.,
329, 1753–1759, 1993.
Feilberg, A., Liu, D. Z., Adamsen, A. P. S., Hansen, M. J., and Jonassen, K.
E. N.: Odorant emissions from intensive pig production measured by online
proton-transfer-reaction mass spectrometry, Environ. Sci. Technol., 44,
5894–5900, 2010.
Filipy, J., Rumburg, B., Moount, G., Westberg, H., and Lamb, B.:
Identification and quantification of volatile organic compounds from a
dairy, Atmos. Environ., 40, 1480–1494, 2006.
Finlayson-Pitts, B. J. and Pitts Jr., J. N.: Chemistry of the Upper and Lower Atmosphere – Theory, Experiments, and Applications, Academic Press,
San Diego, CA, USA, 969 pp., 2000.
Freshour, N. A., Carlson, K. K., Melka, Y. A., Hinz, S., Panta, B., and
Hanson, D. R.: Amine permeation sources characterized with acid
neutralization and sensitivities of an amine mass spectrometer, Atmos. Meas.
Tech., 7, 3611–3621, https://doi.org/10.5194/amt-7-3611-2014, 2014.
Geng, C. M. and Mu, Y. J.: Carbonyl sulfide and dimethyl sulfide exchange
between trees and the atmosphere, Atmos. Environ., 40, 1373–1383, 2006.
Goldan, P. D., Kuster, W. C., Albritton, D. L., and Fehsenfeld, F. C.: The
measurement of natural sulfur emissions from soils and vegetation – 3 Sites
in the Eastern-United-States revisited, J. Atmos. Chem., 5, 439–467, 1987.
Graus, M., Muller, M., and Hansel, A.: High resolution PTR-TOF:
Quantification and formula confirmation of VOC in real time, J. Am. Soc. Mass Spectr., 21, 1037–1044, 2010.
Greaves, J. L. and Roboz, J.: Mass Spectrometry for Novices, Taylor and Francis, Boca Raton, FL, USA, 2013.
Grosjean, D.: Photooxidation of methyl sulfide, ethyl sulfide and
methanethiol, Environ. Sci. Technol., 18, 460–468, 1984.
Gueneron, M., Erickson, M. H., VanderScheldn, G. S., and Jobson, B. T.:
PTR-MS fragmentation patterns of gasoline hydrocarbons, Int. J. Mass
Spectrom., 379, 97–109, 2015.
Guo, H., Simpson, I. J., Ding, A. J., Wang, T., Saunders, S. M., Wang, T.
J., Cheng, H. R., Barletta, B., Meinardi, S., Blake, D. R., and Rowland, F.
S.: Carbonyl sulfide, dimethyl sulfide and carbon disulfide in the Pearl
River Delta of southern China: Impact of anthropogenic and biogenic sources,
Atmos. Environ., 44, 3805–3813, 2010.
Haberhauer-Troyer, C., Rosenberg, E., and Grasserbauer, M.: Evaluation of
solid-phase microextraction for sampling of volatile organic sulfur
compounds in air for subsequent gas chromatographic analysis with atomic
emission detection, J. Chromatogr. A, 848, 305–315, 1999.
Hallquist, M., Wenger, J. C., Baltensperger, U., Rudich, Y., Simpson, D.,
Claeys, M., Dommen, J., Donahue, N. M., George, C., Goldstein, A. H.,
Hamilton, J. F., Herrmann, H., Hoffmann, T., Iinuma, Y., Jang, M., Jenkin, M.
E., Jimenez, J. L., Kiendler-Scharr, A., Maenhaut, W., McFiggans, G., Mentel,
Th. F., Monod, A., Prévôt, A. S. H., Seinfeld, J. H., Surratt, J. D.,
Szmigielski, R., and Wildt, J.: The formation, properties and impact of
secondary organic aerosol: current and emerging issues, Atmos. Chem. Phys.,
9, 5155–5236, https://doi.org/10.5194/acp-9-5155-2009, 2009.
Hansen, M. J., Adamsen, A. P. S., Feilberg, A., and Jonassen, K. E. N.:
Stability of odorants from pig production in sampling bags for olfactometry,
J. Environ. Qual., 40, 1096–1102, 2011.
Hansen, M. J., Liu, D. Z., Guldberg, L. B., and Feilberg, A.: Application of
proton-transfer reaction mass spectrometry to the assessment of odorant
removal in a biological air cleaner for pig production, J. Agr. Food Chem.,
60, 2599–2606, 2012a.
Hansen, M. J., Toda, K., Obata, T., Adamsen, A. P. S., and Feilberg, A.:
Evaluation of single column trapping/separation and chemiluminescence
detection for measurement of methanethiol and dimethyl sulfide from pig
production, J. Anal. Methods Chem., 2012, 489239, https://doi.org/10.1155/2012/489239, 2012b.
Hansen, M. J., Adamsen, A. P. S., and Feilberg, A.: Recovery of odorants
from an olfactometer measured by proton-transfer reaction mass spectrometry,
Sensors-Basel, 13, 7860–7871, 2013.
Harris, D. C.: Quantitative chemical analysis, 3rd edn., WH Freeman and Company, New York, USA, 1991.
Hatakeyama, S. and Akimoto, H.: Reactions of OH radicals with methanethiol,
dimethylsulfide and dimethyl disulfide in air, J. Phys. Chem., 87,
2387–23295, 1983.
Hayward, S., Hewitt, C., Sartin, J., and Owen, S.: Performance
characteristics and applications of a proton transfer reaction mass
spectometer for measuring volatile organic compounds in ambient air,
Environ. Sci. Technol., 36, 1554–1560, 2002.
Herbig, J., Muller, M., Schallhart, S., Titzmann, T., Graus, M., and Hansel,
A.: On-line breath analysis with PTR-TOF, J. Breath Res., 3, 1–10, 2009.
Hinds, W. C.: Aerosol Technology: Properties, Behavior and Measurement of Airborne Particles, John Wiley & Sons Inc., New York, USA, 1999.
Hofmann, U., Hofmann, R., and Kesselmeier, J.: Cryogenic trapping of reduced
sulfur-compounds using a nafion drier and cotton wadding as an oxidant
scavenger, Atmos. Environ., 26, 2445–2449, 1992.
Jardine, K., Yañez-Serrano, A. M., Williams, J., Kunert, N., Jardine,
A., Taylor, T., Abrell, L., Artaxo, P., Guenther, A., Hewitt, C. N., House,
E., Florentino, A. P., Manzi, A., Higuchi, N., Kesselmeier, J., Behrendt,
T., Veres, P. R., Derstroff, B., Fuentes, J. D., Martin, S. T., and Andreae,
M. O.: Dimethylsulfide in the Amazon rainforest, Global Biogeochem. Cy., 29,
19–32, 2015.
Jardine, K. J., Henderson, W. M., Huxman, T. E., and Abrell, L.: Dynamic
Solution Injection: a new method for preparing pptv–ppbv standard atmospheres
of volatile organic compounds, Atmos. Meas. Tech., 3, 1569–1576,
https://doi.org/10.5194/amt-3-1569-2010, 2010.
Jordan, A., Haidacher, S., Hanel, G., Hartungen, E., Mark, L., Seehauser,
H., Schottkowsky, R., Sulzer, P., and Mark, T. D.: A high resolution and
high sensitivity proton-transfer-reaction time-of-flight mass spectrometer
(PTR-TOF-MS), Int. J. Mass Spec., 286, 122–128, 2009.
Kai, M., Crespo, E., Cristescu, S. M., Harren, F. J. M., Francke, W., and
Piechulla, B.: Serratia odorifera: Analysis of volatile emission and
biological impact of volatile compounds on Arabidopsis thaliana, Appl.
Microbiol. Biot., 88, 965–976, 2010.
Katoh, H., Kuniyoshi, I., Hirai, M., and Shoda, M.: Studies of the oxidation
mechanism of sulfur-containing gases on wet activated carbon-fiber, Appl.
Catal. B-Environ., 6, 255–262, 1995.
Kesselmeier, J., Meixner, F. X., Hofmann, U., Ajavon, A. L., Leimbach, S.,
and Andreae, M. O.: Reduced sulfur compound exchange between the atmosphere
and tropical tree species in southern Cameroon, Biogeochemistry, 23, 23–45,
1993.
Khan, M. A. H., Whelan, M. E., and Rhew, R. C.: Analysis of low
concentration reduced sulfur compounds (RSCs) in air: Storage issues and
measurement by gas chromatography with sulfur chemiluminescence detection,
Talanta, 88, 581–586, 2012.
Kim, K. H., Choi, G. H., Choi, Y. J., Song, H. N., Yang, H. S., and Oh, J.
M.: The effects of sampling materials selection in the collection of reduced
sulfur compounds in air, Talanta, 68, 1713–1719, 2006.
Kim, K. Y., Ko, H. J., Kim, H. T., Kim, Y. S., Roh, Y. M., Lee, C. M., Kim,
H. S., and Kim, C. N.: Sulfuric odorous compounds emitted from pig-feeding
operations, Atmos. Environ., 41, 4811–4818, 2007.
Kim, S., Karl, T., Helmig, D., Daly, R., Rasmussen, R., and Guenther, A.:
Measurement of atmospheric sesquiterpenes by proton transfer reaction-mass
spectrometry (PTR-MS), Atmos. Meas. Tech., 2, 99–112,
https://doi.org/10.5194/amt-2-99-2009, 2009.
Koga, S., Nomura, D., and Wada, M.: Variation of dimethylsulfide mixing
ratio over the Southern Ocean from 36° S to 70° S, Polar Sci.,
8, 306–313, 2014.
Kulmala, M. and Kerminen, V. M.: On the formation and growth of atmospheric
nanoparticles, Atmos. Res., 90, 132–150, 2008.
Kulmala, M., Vehkamäki, H., Petäjä, T., Maso, M. D., Lauri, A.,
Kerminen, V.-M., Birmili, W., and McMurry, P. H.: Formation and growth rates
of ultrafine atmospheric particles: a review of observations, Aerosol
Science, 35, 143–176, 2004.
Kulmala, M., Kontkanen, J., Junninen, H., Lehtipalo, K., Manninen, H. E.,
Nieminen, T., Petaja, T., Sipila, M., Schobesberger, S., Rantala, P.,
Franchin, A., Jokinen, T., Jarvinen, E., Aijala, M., Kangasluoma, J.,
Hakala, J., Aalto, P. P., Paasonen, P., Mikkila, J., Vanhanen, J., Aalto,
J., Hakola, H., Makkonen, U., Ruuskanen, T., Mauldin, R. L., Duplissy, J.,
Vehkamaki, H., Back, J., Kortelainen, A., Riipinen, I., Kurten, T.,
Johnston, M. V., Smith, J. N., Ehn, M., Mentel, T. F., Lehtinen, K. E. J.,
Laaksonen, A., Kerminen, V. M., and Worsnop, D. R.: Direct observations of
atmospheric aerosol nucleation, Science, 339, 943–946, 2013.
Kuster, W. C. and Goldan, P. D.: Quantitation of the losses of gaseous
sulfur-compounds to enclosure walls, Environ. Sci. Technol., 21, 810–815,
1987.
Lestremau, F., Andersson, F. A. T., and Desauziers, V.: Investigation of
artefact formation during analysis of volatile sulphur compounds using solid
phase microextraction (SPME), Chromatographia, 59, 607–613, 2004.
Li, R., Warneke, C., Graus, M., Field, R., Geiger, F., Veres, P. R., Soltis,
J., Li, S.-M., Murphy, S. M., Sweeney, C., Pétron, G., Roberts, J. M., and de
Gouw, J.: Measurements of hydrogen sulfide (H2S) using PTR-MS: calibration,
humidity dependence, inter-comparison and results from field studies in an
oil and gas production region, Atmos. Meas. Tech., 7, 3597–3610,
https://doi.org/10.5194/amt-7-3597-2014, 2014.
Lide, D. R.: Handbook of Chemistry and Physics, 74th edn., CRC Press, Boca Raton, FL, USA, 1994.
Lindinger, W., Hansel, A., and Jordan, A.: On-line monitoring of volatile
organic compounds at ppt levels by means of proton-transfer reaction mass
spectrometry (PTR-MS) medical applications, food control and environmental
research, Inter. J. Mass Spectrom., 173, 191–241, 1998.
Maleknia, S. D., Bell, T. L., and Adams, M. A.: PTR-MS analysis of reference
and plant-emitted volatile organic compounds, Int. J. Mass Spectrom., 262,
203–210, 2007.
Mayrhofer, S., Mikoviny, T., Waldhuber, S., Wagner, A. O., Innerebner, G.,
Franke-Whittle, I. H., Märk, T. D., Hansel, A., and Insam, H.: Microbial
community related to volatile organic compound (VOC) emission in household
biowaste, Environ. Microbiol., 8, 1960–1974, 2006.
Meinardi, S., Simpson, I. J., Blake, N. J., Blake, D. R., and Rowland, F.
S.: Dimethyl disulfide (DMDS) and dimethyl sulfide (DMS) emissions from
biomass burning in Australia, Geophys. Res. Lett., 30, 1454,
https://doi.org/1410.1029/2003GL016967, 2003.
Meinardi, S., Jin, K.-Y., Barletta, B., Blake, D. R., and Vaziri, N. D.:
Exhaled breath and fecal volatile organic biomarkers of chronic kidney
disease, Biochim. Biophys. Acta, 1830, 2531–2537, 2013.
Mikoviny, T., Kaser, L., and Wisthaler, A.: Development and characterization
of a High-Temperature Proton-Transfer-Reaction Mass Spectrometer (HT-PTR-MS),
Atmos. Meas. Tech., 3, 537–544, https://doi.org/10.5194/amt-3-537-2010, 2010.
Mockel, H. J.: FID response factors for aliphatic sulphur compounds at
higher concentration levels, Z. Anal. Chem. Freseniu., 279, 199–202, 1976.
Mockel, H. J. and Weiss, J.: The electron-impact and chemical ionization
mass spectra of dimethyltrisulfide, Z. Anal. Chem. Freseniu., 301, 417–425,
1980.
Nguyen, B. C., Bonsang, B., and Gaudry, A.: The role of the ocean in the
global atmospheric sulfur cycle, J. Geophys. Res.-Oc. Atm., 88, 903–914, 1983.
Papurello, D., Soukoulis, C., Schuhfried, E., Cappellin, L., Gasperi, F.,
Silvestri, S., Santarelli, M., and Biasioli, F.: Monitoring of volatile
compound emissions during dry anaerobic digestion of the organic fraction of
municipal solid waste by proton transfer reaction time-of-flight mass
spectrometry, Bioresource Technol., 126, 254–265, 2012.
Passarella, R., Shul, R. J., Keesee, R. G., and Castleman, A. W.: Gas-phase
reactions of sulfides, mercaptans, and dimethyl methylphosphonate with ionic
species derived from argon and water, Inter. J. Mass Spectrom., 81, 227–233,
1987.
Patroescu, I. V., Barnes, I., Becker, K. H., and Mihalopoulos, N.: FT-IR
product study of the OH-initiated oxidation of DMS in the presence of NOx,
Atmos. Environ., 33, 25–35, 1999.
Perraud, V., Horne, J. R., Martinez, A., Kalinowski, J., Meinardi, S.,
Dawson, M. L., Wingen, L. M., Dabdub, D., Blake, D. R., Gerber, R. B., and
Finlayson-Pitts, B. J.: The future of airborne sulfur-containing particles
in the absence of fossil fuel sulfur dioxide emissions, P. Natl. Acad. Sci.
USA, 112, 13514–13519, 2015.
Pope III, C. A. and Dockery, D. W.: Health effects of fine particulate air
pollution: Lines that connect, J. Air Waste Manage., 56,
709–742, 2006.
Pope III, C. A., Burnett, R. T., Thun, M. J., Calle, E. E., Krewski, D.,
Ito, K., and Thurston, G. D.: Lung cancer, cardiopulmonary mortality and
long-term exposure to fine particulate air pollution, JAMA-J. Am. Med. Assoc.,
287, 1132–1141, 2002.
Schuhfried, E., Probst, M., Limtrakul, J., Wannakao, S., Aprea, E.,
Cappellin, L., Mark, T. D., Gasperi, F., and Biasioli, F.: Sulfides:
Chemical ionization induced fragmentation studied with proton transfer
reaction mass spectrometry and density functional calculations, J. Mass
Spectrom., 48, 367–378, 2013.
Shaw, S. L., Mitloehner, F. M., Jackson, W., Depeters, E. J., Fadel, J. G.,
Robinson, P. H., Holzinger, R., and Goldstein, A. H.: Volatile organic
compound emissions from dairy cows and their waste as measured by
proton-transfer-reaction mass spectrometry, Environ. Sci. Technol., 41, 1310–1316, 2007.
Simpson, I. J., Colman, J. J., Swanson, A. L., Bandy, A. R., Thornton, D.
C., Blake, D. R., and Rowland, F. S.: Aircraft measurements of dimethyl
sulfide (DMS) using a whole air sampling technique, J. Atmos. Chem., 39,
191–213, 2001.
Skoog, D. A. and Holler, F. J.: Principles of Instrumental Analysis, Thomson Brooks/Cole, Belmont, CA, USA, 2007.
Smith, J. N., Barsanti, K. C., Friedli, H. R., Ehn, M., Kulmala, M.,
Collins, D. R., Scheckman, J. H., Williams, B. J., and McMurry, P. H.:
Observations of aminium salt formation in atmospheric nanoparticles:
Implications for aerosol growth, P. Natl. Acad. Sci. USA, 107, 6634–6639,
2010.
Španěl, P. and Smith, D.: Selected ion flow tube studies of the
reactions of H3O+, NO+, and O2+ with some
organosulphur molecules, Int. J. Mass Spectrom., 176, 167–176, 1998.
Sulyok, M., Haberhauer-Troyer, C., and Rosenberg, E.: Observation of
sorptive losses of volatile sulfur compounds during natural gas sampling, J.
Chromatogr. A, 946, 301–305, 2002.
Tani, A., Hayward, S., and Hewitta, C. N.: Measurement of monoterpenes and
related compounds by proton transfer reaction-mass spectrometry (PTR-MS),
Int. J. Mass Spectrom., 223, 561–578, 2003.
Taucher, J., Hansel, A., Jordan, A., and Lindinger, W.: Analysis of
compounds in human breath after ingestion of garlic using
proton-transfer-reaction mass spectrometry, J. Agr. Food Chem., 44,
3778–3782, 1996.
Tonzetic. J: Direct gas chromatographic analysis of sulphur compounds in
mouth air in man, Arch. Oral Biol., 16, 587–597, 1971.
Trabue, S., Scoggin, K., Mitloehner, F., Li, J., Burns, R., and Xin, H.:
Field sampling method for quantifying volatile sulfur compounds from animal
feeding operations, Atmos. Environ., 42, 3332–3341, 2008.
Tyndall, G. S. and Ravishankara, A. R.: Atmospheric oxidation of reduced
sulfur species, Int. J. Chem. Kinet., 23, 483–527, 1991.
Van den Velde, S., Nevens, F., Van Hee, P., Van Steenberghe, D., and
Quirynen, M.: GC-MS analysis of breath odor compounds in liver patients, J.
Chromat. B, 875, 344–348, 2008.
Van den Velde, S., van Steenberghe, D., Van Hee, P., and Quirynen, M.:
Detection of odorous compounds in breath, J. Dent. Res., 88, 285–289, 2009.
Vandingenen, R., Jensen, N. R., Hjorth, J., and Raes, F.: Peroxynitrate
formation during the nighttime oxidation of dimethylsulfide – Its role as a
reservoir species for aerosol formation, J. Atmos. Chem., 18, 211–237, 1994.
Wang, T. S., Smith, D., and Spanel, P.: Selected ion flow tube, SIFT,
studies of the reactions of H3O+, NO+ and O2+ with
compounds released by Pseudomonas and related bacteria, Int. J. Mass
Spectrom., 233, 245–251, 2004.
Wardencki, W.: Problems with the determination of environmental sulphur
compounds by gas chromatography, J. Chromatogr. A, 793, 1–19, 1998.
Watts, S. F.: The mass budgets of carbonyl sulfide, dimethyl sulfide, carbon
disulfide and hydrogen sulfide, Atmos. Environ., 34, 761–779, 2000.
Williams, J., Wang, N. Y., Cicerone, R. J., Yagi, K., Kurihara, M., and
Terada, F.: Atmospheric methyl halides and dimethyl sulfide from cattle,
Geophys. Res. Lett., 13, 485–491, 1999.
Williams, T. L., Adams, N. G., and Babcock, L. M.: Selected ion flow tube
studies of H3O+(H2O)0, 1 reactions with sulfides and
thiols, Int. J. Mass Spectrom., 172, 149–159, 1998.
Xie, Z. Q., Sun, L. G., Wang, J. J., and Liu, B. Z.: A potential source of
atmospheric sulfur from penguin colony emissions, J. Geophys. Res.,
107, 4617, https://doi.org/10.1029/2002JD002114, 2002.
Yi, Z. G., Wang, X. M., Sheng, G. Y., and Fu, H. M.: Exchange of carbonyl
sulfide (OCS) and dimethyl sulfide (DMS) between rice paddy fields and the
atmosphere in subtropical China, Agr. Ecosyst. Environ.,
123, 116–124, 2008.
Yin, F. D., Grosjean, D., and Seinfeld, J. H.: Photoxidation of dimethyl
sulfide and dimethyl disulfide. I: Mechanism development, J. Atmos. Chem.,
11, 309–364, 1990a.
Yin, F. D., Grosjean, D., Flagan, R. C., and Seinfeld, J. H.: Photooxidation
of dimethyl sulfide and dimethyl disulfide. 2: Mechanism evaluation, J.
Atmos. Chem., 11, 365–399, 1990b.
Zhang, H. Y., Schuchardt, F., Li, G. X., Yang, J. B., and Yang, Q. Y.:
Emission of volatile sulfur compounds during composting of municipal solid
waste (MSW), Waste Manage., 33, 957–963, 2013.
Zhang, R. Y., Khalizov, A., Wang, L., Hu, M., and Xu, W.: Nucleation and
growth of nanoparticles in the atmosphere, Chem. Rev., 112, 1957–2011, 2012.
Zhao, J. and Zhang, R. Y.: Proton transfer reaction rate constants between
hydronium ion (H3O+) and volatile organic compounds, Atmos.
Environ., 38, 2177–2185, 2004.
Zhu, L., Nenes, A., Wine, P. H., and Nicovich, J. M.: Effects of aqueous
organosulfur chemistry on particulate methanesulfonate to non-sea salt
sulfate ratios in the marine atmosphere, J. Geophys. Res., 111, 1–15, 2006.
Short summary
Gas phase organosulfur compounds in air serve as precursors of particles which impact human health, visibility, and climate. We compare here two different approaches to measuring these compounds, one an online mass spectrometry technique and the other canister sampling followed by offline analysis by gas chromatography. We show that each approach has its own advantages and limitations in measuring these compounds in complex mixtures, including some artifacts due to reactions on surfaces.
Gas phase organosulfur compounds in air serve as precursors of particles which impact human...