Articles | Volume 9, issue 10
https://doi.org/10.5194/amt-9-4901-2016
https://doi.org/10.5194/amt-9-4901-2016
Research article
 | 
06 Oct 2016
Research article |  | 06 Oct 2016

Proof of concept for turbulence measurements with the RPAS SUMO during the BLLAST campaign

Line Båserud, Joachim Reuder, Marius O. Jonassen, Stephan T. Kral, Mostafa B. Paskyabi, and Marie Lothon

Related authors

Exploring the potential of the RPA system SUMO for multipurpose boundary-layer missions during the BLLAST campaign
Joachim Reuder, Line Båserud, Marius O. Jonassen, Stephan T. Kral, and Martin Müller
Atmos. Meas. Tech., 9, 2675–2688, https://doi.org/10.5194/amt-9-2675-2016,https://doi.org/10.5194/amt-9-2675-2016, 2016
Short summary

Related subject area

Subject: Others (Wind, Precipitation, Temperature, etc.) | Technique: In Situ Measurement | Topic: Instruments and Platforms
Method development and application for the analysis of chiral organic marker species in ice-cores
Johanna Schäfer, Anja Beschnitt, François Burgay, Thomas Singer, Margit Schwikowski, and Thorsten Hoffmann
EGUsphere, https://doi.org/10.5194/egusphere-2024-2243,https://doi.org/10.5194/egusphere-2024-2243, 2024
Short summary
High-resolution wind speed measurements with quadcopter uncrewed aerial systems: calibration and verification in a wind tunnel with an active grid
Johannes Kistner, Lars Neuhaus, and Norman Wildmann
Atmos. Meas. Tech., 17, 4941–4955, https://doi.org/10.5194/amt-17-4941-2024,https://doi.org/10.5194/amt-17-4941-2024, 2024
Short summary
High-altitude balloon-launched uncrewed aircraft system measurements of atmospheric turbulence and qualitative comparison with infrasound microphone response
Anisa N. Haghighi, Ryan D. Nolin, Gary D. Pundsack, Nick Craine, Aliaksei Stratsilatau, and Sean C. C. Bailey
Atmos. Meas. Tech., 17, 4863–4889, https://doi.org/10.5194/amt-17-4863-2024,https://doi.org/10.5194/amt-17-4863-2024, 2024
Short summary
Evaluation of the hyperspectral radiometer (HSR1) at the Atmospheric Radiation Measurement (ARM) Southern Great Plains (SGP) site
Kelly A. Balmes, Laura D. Riihimaki, John Wood, Connor Flynn, Adam Theisen, Michael Ritsche, Lynn Ma, Gary B. Hodges, and Christian Herrera
Atmos. Meas. Tech., 17, 3783–3807, https://doi.org/10.5194/amt-17-3783-2024,https://doi.org/10.5194/amt-17-3783-2024, 2024
Short summary
Cost-effective off-grid automatic precipitation samplers for pollutant and biogeochemical atmospheric deposition
Alessia A. Colussi, Daniel Persaud, Melodie Lao, Bryan K. Place, Rachel F. Hems, Susan E. Ziegler, Kate A. Edwards, Cora J. Young, and Trevor C. VandenBoer
Atmos. Meas. Tech., 17, 3697–3718, https://doi.org/10.5194/amt-17-3697-2024,https://doi.org/10.5194/amt-17-3697-2024, 2024
Short summary

Cited articles

Aeroprobe: On-The-Fly! Air Data System User's Manual Revision F, 1/2012, available at: https://recuv-ops.colorado.edu/.../OTF_Manual.pdf, 2012.
Balsley, B. B., Jensen, M. L., Frehlich, R. G., Eaton, F. D., Bishop, K. P., and Hugo, R. J.: In-situ turbulence measurement technique using state-of-the-art kite/blimp platforms, in: Proc. SPIE 3706, Airborne Laser Advanced Technology II, edited by: Steiner, T. D. and Merritt, P. H., 3706, 2–10, https://doi.org/10.1117/12.356947, 1999.
Bange, J., Beyrich, F., and Engelbart, D. a. M.: Airborne measurements of turbulent fluxes during LITFASS-98: Comparison with ground measurements and remote sensing in a case study, Theor. Appl. Climatol., 73, 35–51, https://doi.org/10.1007/s00704-002-0692-6, 2002.
Bange, J., Spieß, T., Herold, M., Beyrich, F., and Hennemuth, B.: Turbulent fluxes from Helipod flights above quasi-homogeneous patches within the LITFASS area, Bound.-Lay. Meteorol., 121, 127–151, https://doi.org/10.1007/s10546-006-9106-0, 2006.
BLLAST: BLLAST dataset, available at: http:/bllast.sedoo.fr/database, last access: 7 January, 2016.
Download
Short summary
The micro-RPAS SUMO (Small Unmanned Meteorological Observer) equipped with a five-hole-probe (5HP) system for turbulent flow measurements was operated in 49 flight missions during the BLLAST (Boundary-Layer Late Afternoon and Sunset Turbulence) field campaign in 2011. Based on data sets from these flights, we investigate the potential and limitations of airborne velocity variance and TKE (turbulent kinetic energy) estimations by an RPAS with a take-off weight below 1 kg.