Articles | Volume 10, issue 10
https://doi.org/10.5194/amt-10-3985-2017
https://doi.org/10.5194/amt-10-3985-2017
Research article
 | 
27 Oct 2017
Research article |  | 27 Oct 2017

A new method for atmospheric detection of the CH3O2 radical

Lavinia Onel, Alexander Brennan, Paul W. Seakins, Lisa Whalley, and Dwayne E. Heard

Related authors

An intercomparison of CH3O2 measurements by fluorescence assay by gas expansion and cavity ring-down spectroscopy within HIRAC (Highly Instrumented Reactor for Atmospheric Chemistry)
Lavinia Onel, Alexander Brennan, Michele Gianella, James Hooper, Nicole Ng, Gus Hancock, Lisa Whalley, Paul W. Seakins, Grant A. D. Ritchie, and Dwayne E. Heard
Atmos. Meas. Tech., 13, 2441–2456, https://doi.org/10.5194/amt-13-2441-2020,https://doi.org/10.5194/amt-13-2441-2020, 2020
An intercomparison of HO2 measurements by fluorescence assay by gas expansion and cavity ring-down spectroscopy within HIRAC (Highly Instrumented Reactor for Atmospheric Chemistry)
Lavinia Onel, Alexander Brennan, Michele Gianella, Grace Ronnie, Ana Lawry Aguila, Gus Hancock, Lisa Whalley, Paul W. Seakins, Grant A. D. Ritchie, and Dwayne E. Heard
Atmos. Meas. Tech., 10, 4877–4894, https://doi.org/10.5194/amt-10-4877-2017,https://doi.org/10.5194/amt-10-4877-2017, 2017
Short summary

Related subject area

Subject: Gases | Technique: Laboratory Measurement | Topic: Instruments and Platforms
A flexible device to produce a gas stream with a precisely controlled water vapour mixing ratio and isotope composition based on microdrop dispensing technology
Harald Sodemann, Alena Dekhtyareva, Alvaro Fernandez, Andrew Seidl, and Jenny Maccali
Atmos. Meas. Tech., 16, 5181–5203, https://doi.org/10.5194/amt-16-5181-2023,https://doi.org/10.5194/amt-16-5181-2023, 2023
Short summary
Revision of an open-split-based dual-inlet system for elemental and isotope ratio mass spectrometers with a focus on clumped-isotope measurements
Stephan Räss, Peter Nyfeler, Paul Wheeler, Will Price, and Markus Christian Leuenberger
Atmos. Meas. Tech., 16, 4489–4505, https://doi.org/10.5194/amt-16-4489-2023,https://doi.org/10.5194/amt-16-4489-2023, 2023
Short summary
Characterisation of gaseous iodine species detection using the multi-scheme chemical ionisation inlet 2 with bromide and nitrate chemical ionisation methods
Xu-Cheng He, Jiali Shen, Siddharth Iyer, Paxton Juuti, Jiangyi Zhang, Mrisha Koirala, Mikko M. Kytökari, Douglas R. Worsnop, Matti Rissanen, Markku Kulmala, Norbert M. Maier, Jyri Mikkilä, Mikko Sipilä, and Juha Kangasluoma
Atmos. Meas. Tech., 16, 4461–4487, https://doi.org/10.5194/amt-16-4461-2023,https://doi.org/10.5194/amt-16-4461-2023, 2023
Short summary
A novel inlet for enriching concentrations of reactive organic gases in low sampling flows
Namrata Shanmukh Panji and Gabriel Isaacman-VanWertz
Atmos. Meas. Tech., 16, 4319–4330, https://doi.org/10.5194/amt-16-4319-2023,https://doi.org/10.5194/amt-16-4319-2023, 2023
Short summary
Absorption of VOCs by polymer tubing: implications for indoor air and use as a simple gas-phase volatility separation technique
Melissa A. Morris, Demetrios Pagonis, Douglas A. Day, Joost A. de Gouw, Paul J. Ziemann, and Jose L. Jimenez
EGUsphere, https://doi.org/10.5194/egusphere-2023-1241,https://doi.org/10.5194/egusphere-2023-1241, 2023
Short summary

Cited articles

Albaladejo, J., Jimenez, E., Notario, A., Cabanas, B., and Martinez, E.: CH3O yield in the CH3+ O3 reaction using the LP/LIF technique at room temperature, J. Phys. Chem. A, 106, 2512–2519, https://doi.org/10.1021/jp012249o, 2002.
Atkinson, R., Baulch, D. L., Cox, R. A., Crowley, J. N., Hampson, R. F., Hynes, R. G., Jenkin, M. E., Rossi, M. J., Troe, J., and IUPAC Subcommittee: Evaluated kinetic and photochemical data for atmospheric chemistry: Volume II – gas phase reactions of organic species, Atmos. Chem. Phys., 6, 3625–4055, https://doi.org/10.5194/acp-6-3625-2006, 2006.
Biggs, P., Canosa-Mas, C. E., Fracheboud, J. M., Parr, A. D., Shallcross, D. E., Wayne, R. P., and Caralp, F.: Investigation into the pressure dependence between 1 and 10 Torr of the reactions of NO2 with CH3 and CH3O, J. Chem. Soc. Faraday T., 89, 4163–4169, https://doi.org/10.1039/ft9938904163, 1993.
Biggs, P., Canosa-Mas, C. E., Fracheboud, J. M., Shallcross, D. E., and Wayne, R. P.: Kinetics of the reaction of F atoms with CH3ONO and CH3O, and the reaction of CH3O with a number of hydrocarbons, J. Chem. Soc. Faraday T., 93, 2481–2486, https://doi.org/10.1039/a701175j, 1997.
Bossolasco, A., Farago, E. P., Schoemaecker, C., and Fittschen, C.: Rate constant of the reaction between CH3O2 and OH radicals, Chem. Phys. Lett., 593, 7–13, https://doi.org/10.1016/j.cplett.2013.12.052, 2014.
Download
Short summary
Methyl peroxy (CH3O2) radicals are the most abundant organic peroxy radical species and are critical intermediates in rapid chemical cycling at the heart of tropospheric oxidation. Despite their importance, at present CH3O2 radicals are not specifically measured in the atmosphere by any direct or indirect method. This work presents a new method for the selective and sensitive detection of CH3O2 radicals and its use for the measurement of CH3O2 in the atmospheric simulation chamber HIRAC.