Articles | Volume 10, issue 11
https://doi.org/10.5194/amt-10-4235-2017
https://doi.org/10.5194/amt-10-4235-2017
Research article
 | 
08 Nov 2017
Research article |  | 08 Nov 2017

Combined neural network/Phillips–Tikhonov approach to aerosol retrievals over land from the NASA Research Scanning Polarimeter

Antonio Di Noia, Otto P. Hasekamp, Lianghai Wu, Bastiaan van Diedenhoven, Brian Cairns, and John E. Yorks

Related authors

Retrieving the atmospheric concentrations of carbon dioxide and methane from the European Copernicus CO2M satellite mission using artificial neural networks
Maximilian Reuter, Michael Hilker, Stefan Noël, Antonio Di Noia, Michael Weimer, Oliver Schneising, Michael Buchwitz, Heinrich Bovensmann, John P. Burrows, Hartmut Bösch, and Ruediger Lang
Atmos. Meas. Tech., 18, 241–264, https://doi.org/10.5194/amt-18-241-2025,https://doi.org/10.5194/amt-18-241-2025, 2025
Short summary
Surface reflectance biases in XCH4 retrievals from the 2.3 μm band are enhanced in the presence of aerosols
Peter Somkuti, Greg M. McGarragh, Christopher O'Dell, Antonio Di Noia, Leif Vogel, Sean Crowell, Lesley E. Ott, and Hartmut Bösch
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2024-145,https://doi.org/10.5194/amt-2024-145, 2025
Preprint under review for AMT
Short summary
Retrieval of greenhouse gases from GOSAT and GOSAT-2 using the FOCAL algorithm
Stefan Noël, Maximilian Reuter, Michael Buchwitz, Jakob Borchardt, Michael Hilker, Oliver Schneising, Heinrich Bovensmann, John P. Burrows, Antonio Di Noia, Robert J. Parker, Hiroshi Suto, Yukio Yoshida, Matthias Buschmann, Nicholas M. Deutscher, Dietrich G. Feist, David W. T. Griffith, Frank Hase, Rigel Kivi, Cheng Liu, Isamu Morino, Justus Notholt, Young-Suk Oh, Hirofumi Ohyama, Christof Petri, David F. Pollard, Markus Rettinger, Coleen Roehl, Constantina Rousogenous, Mahesh Kumar Sha, Kei Shiomi, Kimberly Strong, Ralf Sussmann, Yao Té, Voltaire A. Velazco, Mihalis Vrekoussis, and Thorsten Warneke
Atmos. Meas. Tech., 15, 3401–3437, https://doi.org/10.5194/amt-15-3401-2022,https://doi.org/10.5194/amt-15-3401-2022, 2022
Short summary
XCO2 retrieval for GOSAT and GOSAT-2 based on the FOCAL algorithm
Stefan Noël, Maximilian Reuter, Michael Buchwitz, Jakob Borchardt, Michael Hilker, Heinrich Bovensmann, John P. Burrows, Antonio Di Noia, Hiroshi Suto, Yukio Yoshida, Matthias Buschmann, Nicholas M. Deutscher, Dietrich G. Feist, David W. T. Griffith, Frank Hase, Rigel Kivi, Isamu Morino, Justus Notholt, Hirofumi Ohyama, Christof Petri, James R. Podolske, David F. Pollard, Mahesh Kumar Sha, Kei Shiomi, Ralf Sussmann, Yao Té, Voltaire A. Velazco, and Thorsten Warneke
Atmos. Meas. Tech., 14, 3837–3869, https://doi.org/10.5194/amt-14-3837-2021,https://doi.org/10.5194/amt-14-3837-2021, 2021
Short summary
Can a regional-scale reduction of atmospheric CO2 during the COVID-19 pandemic be detected from space? A case study for East China using satellite XCO2 retrievals
Michael Buchwitz, Maximilian Reuter, Stefan Noël, Klaus Bramstedt, Oliver Schneising, Michael Hilker, Blanca Fuentes Andrade, Heinrich Bovensmann, John P. Burrows, Antonio Di Noia, Hartmut Boesch, Lianghai Wu, Jochen Landgraf, Ilse Aben, Christian Retscher, Christopher W. O'Dell, and David Crisp
Atmos. Meas. Tech., 14, 2141–2166, https://doi.org/10.5194/amt-14-2141-2021,https://doi.org/10.5194/amt-14-2141-2021, 2021
Short summary

Related subject area

Subject: Aerosols | Technique: Remote Sensing | Topic: Data Processing and Information Retrieval
Ground-based contrail observations: comparisons with reanalysis weather data and contrail model simulations
Jade Low, Roger Teoh, Joel Ponsonby, Edward Gryspeerdt, Marc Shapiro, and Marc E. J. Stettler
Atmos. Meas. Tech., 18, 37–56, https://doi.org/10.5194/amt-18-37-2025,https://doi.org/10.5194/amt-18-37-2025, 2025
Short summary
Satellite Aerosol Composition Retrieval from a combination of three different Instruments: Information content analysis
Ulrike Stöffelmair, Thomas Popp, Marco Vountas, and Hartmut Bösch
EGUsphere, https://doi.org/10.5194/egusphere-2024-2800,https://doi.org/10.5194/egusphere-2024-2800, 2024
Short summary
Towards Gridded Nighttime Aerosol Optical Thickness Retrievals Using VIIRS Day/Night Band Observations Over Regions with Artificial Light Sources
Jianglong Zhang, Jeffrey S. Reid, Blake Sorenson, Steven D. Miller, Miguel O. Román, Zhuosen Wang, Robert J. D. Spurr, Shawn Jaker, Thomas F. Eck, and Juli I. Rubin
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2024-181,https://doi.org/10.5194/amt-2024-181, 2024
Revised manuscript accepted for AMT
Short summary
Retrieval of stratospheric aerosol extinction coefficients from sun-normalized Ozone Mapper and Profiler Suite Limb Profiler (OMPS-LP) measurements
Alexei Rozanov, Christine Pohl, Carlo Arosio, Adam Bourassa, Klaus Bramstedt, Elizaveta Malinina, Landon Rieger, and John P. Burrows
Atmos. Meas. Tech., 17, 6677–6695, https://doi.org/10.5194/amt-17-6677-2024,https://doi.org/10.5194/amt-17-6677-2024, 2024
Short summary
Optical Properties of North Atlantic Aerosols Through a compact dual-wavelength depolarization Lidar Observations
Yenny González, María F. Sánchez-Barrero, Ioana Popovici, África Barreto, Stephane Victori, Ellsworth J. Welton, Rosa D. García, Pablo G. Sicilia, Fernando A. Almansa, Carlos Torres, and Philippe Goloub
EGUsphere, https://doi.org/10.5194/egusphere-2024-2727,https://doi.org/10.5194/egusphere-2024-2727, 2024
Short summary

Cited articles

Berdnik, V. V., Mukhamedyarov, R. D., and Loiko, V. A.: Sizing of soft spheroidal particles by multiangle scattered light intensity data: application of neural networks, J. Quant. Spectrosc. Ra., 89, 279–289, https://doi.org/10.1016/j.jqsrt.2004.05.028, 2004.
Bishop, C. M.: Neural Networks for Pattern Recognition, Oxford University Press, New York, NY, United States, 1995a.
Bishop, C. M.: Training with noise is equivalent to Tikhonov regularization, Neural Comput., 7, 108–116, https://doi.org/10.1162/neco.1995.7.1.108, 1995b.
Bös, S. and Amari, S.: Annealed online learning in multilayer neural networks, in: On-Line Learning in Neural Networks, edited by: Saad, D., chap. 10, 209–229, Cambridge University Press, New York, NY, United States, https://doi.org/10.1017/CBO9780511569920.011, 1999.
Cairns, B., Russell, E. E., and Travis, L. D.: Research Scanning Polarimeter: calibration and ground-based measurements, in: Proc. SPIE 3754, Polarization: Measurement, Analysis, and Remote Sensing II, 186, https://doi.org/10.1117/12.366329, 1999.
Download
Short summary
In this paper an algorithm for the retrieval of aerosol properties from NASA Research Scanning Polarimeter (RSP) data is presented. An artificial neural network is used to produce a first estimate of the aerosol properties, which is then improved using an iterative retrieval scheme based on Phillips–Tikhonov regularization. Using the neural network retrievals as a first guess for the Phillips–Tikhonov improved the retrieval convergence, confirming results previously found on ground-based data.
Share