Articles | Volume 10, issue 11
Atmos. Meas. Tech., 10, 4279–4302, 2017
https://doi.org/10.5194/amt-10-4279-2017
Atmos. Meas. Tech., 10, 4279–4302, 2017
https://doi.org/10.5194/amt-10-4279-2017

Research article 10 Nov 2017

Research article | 10 Nov 2017

Systematic characterization and fluorescence threshold strategies for the wideband integrated bioaerosol sensor (WIBS) using size-resolved biological and interfering particles

Nicole J. Savage et al.

Related authors

Global modeling of fungal spores with the EMAC chemistryclimate model: uncertainties in emission parametrizations and observations
Meryem Tanarhte, Sara Bacer, Susannah M. Burrows, J. Alex Huffman, Kyle M. Pierce, Andrea Pozzer, Roland Sarda-Estève, Nicole J. Savage, and Jos Lelieveld
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2019-251,https://doi.org/10.5194/acp-2019-251, 2019
Publication in ACP not foreseen
Short summary
Spectral Intensity Bioaerosol Sensor (SIBS): an instrument for spectrally resolved fluorescence detection of single particles in real time
Tobias Könemann, Nicole Savage, Thomas Klimach, David Walter, Janine Fröhlich-Nowoisky, Hang Su, Ulrich Pöschl, J. Alex Huffman, and Christopher Pöhlker
Atmos. Meas. Tech., 12, 1337–1363, https://doi.org/10.5194/amt-12-1337-2019,https://doi.org/10.5194/amt-12-1337-2019, 2019
Short summary
Evaluation of a hierarchical agglomerative clustering method applied to WIBS laboratory data for improved discrimination of biological particles by comparing data preparation techniques
Nicole J. Savage and J. Alex Huffman
Atmos. Meas. Tech., 11, 4929–4942, https://doi.org/10.5194/amt-11-4929-2018,https://doi.org/10.5194/amt-11-4929-2018, 2018
Short summary
Characterization of steady-state fluorescence properties of polystyrene latex spheres using off- and online spectroscopic methods
Tobias Könemann, Nicole J. Savage, J. Alex Huffman, and Christopher Pöhlker
Atmos. Meas. Tech., 11, 3987–4003, https://doi.org/10.5194/amt-11-3987-2018,https://doi.org/10.5194/amt-11-3987-2018, 2018
Short summary
Global modeling of primary biological particle concentrations with the EMAC chemistry-climate model
Meryem Tanarhte, Sara Bacer, Susannah M. Burrows, J. Alex Huffman, Kyle M. Pierce, Andrea Pozzer, Roland Sarda-Estève, Nicole J. Savage, and Jos Lelieveld
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2018-361,https://doi.org/10.5194/acp-2018-361, 2018
Revised manuscript not accepted

Related subject area

Subject: Aerosols | Technique: Laboratory Measurement | Topic: Instruments and Platforms
Calibration and evaluation of a broad supersaturation scanning (BS2) cloud condensation nuclei counter for rapid measurement of particle hygroscopicity and cloud condensation nuclei (CCN) activity
Najin Kim, Yafang Cheng, Nan Ma, Mira L. Pöhlker, Thomas Klimach, Thomas F. Mentel, Ovid O. Krüger, Ulrich Pöschl, and Hang Su
Atmos. Meas. Tech., 14, 6991–7005, https://doi.org/10.5194/amt-14-6991-2021,https://doi.org/10.5194/amt-14-6991-2021, 2021
Short summary
Correcting bias in log-linear instrument calibrations in the context of chemical ionization mass spectrometry
Chenyang Bi, Jordan E. Krechmer, Manjula R. Canagaratna, and Gabriel Isaacman-VanWertz
Atmos. Meas. Tech., 14, 6551–6560, https://doi.org/10.5194/amt-14-6551-2021,https://doi.org/10.5194/amt-14-6551-2021, 2021
Short summary
Effects of aerosol size and coating thickness on the molecular detection using extractive electrospray ionization
Chuan Ping Lee, Mihnea Surdu, David M. Bell, Houssni Lamkaddam, Mingyi Wang, Farnoush Ataei, Victoria Hofbauer, Brandon Lopez, Neil M. Donahue, Josef Dommen, Andre S. H. Prevot, Jay G. Slowik, Dongyu Wang, Urs Baltensperger, and Imad El Haddad
Atmos. Meas. Tech., 14, 5913–5923, https://doi.org/10.5194/amt-14-5913-2021,https://doi.org/10.5194/amt-14-5913-2021, 2021
Short summary
The nano-scanning electrical mobility spectrometer (nSEMS) and its application to size distribution measurements of 1.5–25 nm particles
Weimeng Kong, Stavros Amanatidis, Huajun Mai, Changhyuk Kim, Benjamin C. Schulze, Yuanlong Huang, Gregory S. Lewis, Susanne V. Hering, John H. Seinfeld, and Richard C. Flagan
Atmos. Meas. Tech., 14, 5429–5445, https://doi.org/10.5194/amt-14-5429-2021,https://doi.org/10.5194/amt-14-5429-2021, 2021
Short summary
A Semi-automated Instrument for Cellular Oxidative Potential Evaluation (SCOPE) of Water-soluble Extracts of Ambient Particulate Matter
Sudheer Salana, Yixiang Wang, Joseph Puthussery, and Vishal Verma
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2021-188,https://doi.org/10.5194/amt-2021-188, 2021
Revised manuscript accepted for AMT
Short summary

Cited articles

Abdel-Shafy, H. I. and Mansour, M. S. M.: A review on polycyclic aromatic hydrocarbons: Source, environmental impact, effect on human health and remediation, Egyptian Journal of Petroleum, 25, 107–123, https://doi.org/10.1016/j.ejpe.2015.03.011, 2016.
Agranovski, V., Ristovski, Z., Hargreaves, M., Blackall, P. J., and Morawska, L.: Real-time measurement of bacterial aerosols with the UVAPS: performance evaluation, J. Aerosol Sci., 34, 301–317, https://doi.org/10.1016/s0021-8502(02)00181-7, 2003.
Agranovski, V., Ristovski, Z. D., Ayoko, G. A., and Morawska, L.: Performance evaluation of the UVAPS in measuring biological aerosols: Fluorescence spectra from NAD(P)H coenzymes and riboflavin, Aerosol Sci. Tech., 38, 354–364, https://doi.org/10.1080/02786820490437505, 2004.
Agranovski, V., and Ristovski, Z. D.: Real-time monitoring of viable bioaerosols: capability of the UVAPS to predict the amount of individual microorganisms in aerosol particles, J. Aerosol Sci., 36, 665–676, https://doi.org/10.1016/j.jaerosci.2004.12.005, 2005.
Aizawa, T. and Kosaka, H.: Investigation of early soot formation process in a diesel spray flame via excitation-emission matrix using a multi-wavelength laser source, Int. J. Engine Res., 9, 79–96, https://doi.org/10.1243/14680874jer01407, 2008.
Download
Short summary
We present a comprehensive characterization of a commonly used commercial instrument (WIBS) for the real-time detection of fluorescent bioaerosols and suggest improved analysis and threshold strategies. Summaries of both biological and potential interfering, non-biological particles (70 aerosol types in total) are discussed in detail. The strategies we suggest will minimize interference from non-biological particles and will aid instrument users’ interpretation of ambient particle data.