Articles | Volume 10, issue 2
https://doi.org/10.5194/amt-10-633-2017
https://doi.org/10.5194/amt-10-633-2017
Research article
 | 
28 Feb 2017
Research article |  | 28 Feb 2017

An online monitor of the oxidative capacity of aerosols (o-MOCA)

Arantzazu Eiguren-Fernandez, Nathan Kreisberg, and Susanne Hering

Related authors

Laboratory and field evaluation of the Aerosol Dynamics Inc. concentrator (ADIc) for aerosol mass spectrometry
Sanna Saarikoski, Leah R. Williams, Steven R. Spielman, Gregory S. Lewis, Arantzazu Eiguren-Fernandez, Minna Aurela, Susanne V. Hering, Kimmo Teinilä, Philip Croteau, John T. Jayne, Thorsten Hohaus, Douglas R. Worsnop, and Hilkka Timonen
Atmos. Meas. Tech., 12, 3907–3920, https://doi.org/10.5194/amt-12-3907-2019,https://doi.org/10.5194/amt-12-3907-2019, 2019
Short summary
Speciated and total emission factors of particulate organics from burning western US wildland fuels and their dependence on combustion efficiency
Coty N. Jen, Lindsay E. Hatch, Vanessa Selimovic, Robert J. Yokelson, Robert Weber, Arantza E. Fernandez, Nathan M. Kreisberg, Kelley C. Barsanti, and Allen H. Goldstein
Atmos. Chem. Phys., 19, 1013–1026, https://doi.org/10.5194/acp-19-1013-2019,https://doi.org/10.5194/acp-19-1013-2019, 2019
Short summary
Evaluation of the Sequential Spot Sampler (S3) for time-resolved measurement of PM2.5 sulfate and nitrate through lab and field measurements
A. Hecobian, A. Evanoski-Cole, A. Eiguren-Fernandez, A. P. Sullivan, G. S. Lewis, S. V. Hering, and J. L. Collett Jr.
Atmos. Meas. Tech., 9, 525–533, https://doi.org/10.5194/amt-9-525-2016,https://doi.org/10.5194/amt-9-525-2016, 2016
Short summary

Related subject area

Subject: Aerosols | Technique: In Situ Measurement | Topic: Instruments and Platforms
Performance evaluation of an online monitor based on X-ray fluorescence for detecting elemental concentrations in ambient particulate matter
Ivonne Trebs, Céline Lett, Andreas Krein, Erika Matsumoto Kawaguchi, and Jürgen Junk
Atmos. Meas. Tech., 17, 6791–6805, https://doi.org/10.5194/amt-17-6791-2024,https://doi.org/10.5194/amt-17-6791-2024, 2024
Short summary
Deriving the hygroscopicity of ambient particles using low-cost optical particle counters
Wei-Chieh Huang, Hui-Ming Hung, Ching-Wei Chu, Wei-Chun Hwang, and Shih-Chun Candice Lung
Atmos. Meas. Tech., 17, 6073–6084, https://doi.org/10.5194/amt-17-6073-2024,https://doi.org/10.5194/amt-17-6073-2024, 2024
Short summary
Fast and sensitive measurements of sub-3 nm particles using Condensation Particle Counters For Atmospheric Rapid Measurements (CPC FARM)
Darren Cheng, Stavros Amanatidis, Gregory S. Lewis, and Coty N. Jen
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2024-157,https://doi.org/10.5194/amt-2024-157, 2024
Revised manuscript accepted for AMT
Short summary
Simulations of the collection of mesospheric dust particles with a rocket instrument
Adrien Pineau, Henriette Trollvik, Herman Greaker, Sveinung Olsen, Yngve Eilertsen, and Ingrid Mann
Atmos. Meas. Tech., 17, 3843–3861, https://doi.org/10.5194/amt-17-3843-2024,https://doi.org/10.5194/amt-17-3843-2024, 2024
Short summary
Characterisation of particle single-scattering albedo with a modified airborne dual-wavelength CAPS monitor
Chenjie Yu, Edouard Pangui, Kevin Tu, Mathieu Cazaunau, Maxime Feingesicht, Landsheere Xavier, Thierry Bourrianne, Vincent Michoud, Christopher Cantrell, Timothy B. Onasch, Andrew Freedman, and Paola Formenti
Atmos. Meas. Tech., 17, 3419–3437, https://doi.org/10.5194/amt-17-3419-2024,https://doi.org/10.5194/amt-17-3419-2024, 2024
Short summary

Cited articles

Acworth, I. N., Bogdanov, M. B., McCabe, D. R., and Beal, M. F.: Estimation of hydroxyl free radical levels in vivo based on liquid chromatography with electrochemical detection, Method. Enzymol., 300, 297–313, 1999.
Andersen, Z. J., Olsen, T. S., Andersen, K. K., Loft, S., Ketzel, M., and Raaschou-Nielsen, O.: Association between short-term exposure to ultrafine particles and hospital admissions for stroke in Copenhagen, Denmark, Eur. Heart J., 31, 2034–2040, https://doi.org/10.1093/eurheartj/ehq188, 2010.
Bardet, G., Achard, S., Loret, T., Desauziers, V., Momas, I., and Seta, N.: A model of human nasal epithelial cells adapted for direct and repeated exposure to airborne pollutants, Toxicol. Lett., 229, 144–149, https://doi.org/10.1016/j.toxlet.2014.05.023, 2014.
Bates, J. T., Weber, R. J., Abrams, J., Verma, V., Fang, T., Klein, M., Strickland, M. J., Sarnat, S. E., Chang, H. H., Mulholland, J. A., Tolbert, P. E., and Russell, A. G.: Reactive Oxygen Species Generation Linked to Sources of Atmospheric Particulate Matter and Cardiorespiratory Effects, Environ. Sci. Technol., 49, 13605–13612, https://doi.org/10.1021/acs.est.5b02967, 2015.
Birben, E., Sahiner, U. M., Sackesen, C., Erzurum, S., and Kalayci, O.: Oxidative stress and antioxidant defense, The World Allergy Organization journal, 5, 9–19, https://doi.org/10.1097/WOX.0b013e3182439613, 2012.
Download
Short summary
The capacity of airborne particles to generate reactive oxygen species has been correlated with the generation of oxidative stress, which may lead to the development of common diseases such as asthma and Alzheimer’s. As the oxidative potential of particles varies significantly by location and time of day, there is a need for monitoring this property in a comprehensive manner. Thus, we are developing a field-deployable system for time-resolved assessment of the oxidative capacity of particles.