the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Profiling aerosol optical, microphysical and hygroscopic properties in ambient conditions by combining in situ and remote sensing
Vassilis Amiridis
Franco Marenco
Athanasios Nenes
Eleni Marinou
Stavros Solomos
Phil Rosenberg
Jamie Trembath
Graeme J. Nott
James Allan
Michael Le Breton
Asan Bacak
Carl Percival
Nikolaos Mihalopoulos
Related authors
A state-of-the-art thermodynamic model has been coupled with the city-scale chemistry transport model EPISODE–CityChem to investigate the equilibrium between the inorganic gas and aerosol phases over the greater Athens area, Greece. The simulations indicate that the formation of nitrates in an urban environment is significantly affected by local nitrogen oxide emissions, as well as ambient temperature, relative humidity, photochemical activity, and the presence of non-volatile cations.
variantsof the model using an implausibility metric. Despite many compensating effects in the model, the procedure constrains the probability distributions of many parameters, and direct radiative forcing uncertainty is reduced by 34 %.
chemical regimeof PM sensitivity to ammonia and nitric acid availability.
red skyevent that occurred over the UK on 15 and 16 October 2017. We use measurements from the Met Office operational lidar and sun-photometer network, as well as other data and model output, to show that the event was caused by the passage of ex-hurricane Ophelia which transported unusual amounts of dust from the Sahara to the UK as well as smoke from forest fires in Portugal.
smoke control lawas it has not been actively enforced for decades now. However, the use of wood in residential heating has increased, partly due to renewable energy targets, but also for discretionary (i.e. pleasant fireplaces) reasons. Our study is based mainly in London, but similar struggles with urban air quality due to residential wood and coal burning are seen in other major European cities.
sweet spotand is sensitive to fluctuations in cloud condensation nuclei concentration alone.
Related subject area
Measurements of transported smoke layers were performed with a lidar in Lille and a five-channel fluorescence lidar in Moscow. Results show the peak of fluorescence in the boundary layer is at 438 nm, while in the smoke layer it shifts to longer wavelengths. The fluorescence depolarization is 45 % to 55 %. The depolarization ratio of the water vapor channel is low (2 ± 0.5 %) in the absence of fluorescence and can be used to evaluate the contribution of fluorescence to water vapor signal.