Articles | Volume 11, issue 5
Atmos. Meas. Tech., 11, 2583–2599, 2018
https://doi.org/10.5194/amt-11-2583-2018
Atmos. Meas. Tech., 11, 2583–2599, 2018
https://doi.org/10.5194/amt-11-2583-2018

Research article 03 May 2018

Research article | 03 May 2018

Vertical wind velocity measurements using a five-hole probe with remotely piloted aircraft to study aerosol–cloud interactions

Radiance Calmer et al.

Related authors

Aerosol–cloud closure study on cloud optical properties using remotely piloted aircraft measurements during a BACCHUS field campaign in Cyprus
Radiance Calmer, Gregory C. Roberts, Kevin J. Sanchez, Jean Sciare, Karine Sellegri, David Picard, Mihalis Vrekoussis, and Michael Pikridas
Atmos. Chem. Phys., 19, 13989–14007, https://doi.org/10.5194/acp-19-13989-2019,https://doi.org/10.5194/acp-19-13989-2019, 2019
Short summary

Related subject area

Subject: Others (Wind, Precipitation, Temperature, etc.) | Technique: In Situ Measurement | Topic: Instruments and Platforms
Arctic observations and numerical simulations of surface wind effects on Multi-Angle Snowflake Camera measurements
Kyle E. Fitch, Chaoxun Hang, Ahmad Talaei, and Timothy J. Garrett
Atmos. Meas. Tech., 14, 1127–1142, https://doi.org/10.5194/amt-14-1127-2021,https://doi.org/10.5194/amt-14-1127-2021, 2021
Short summary
The development of the “Storm Tracker” and its applications for atmospheric high-resolution upper-air observations
Wei-Chun Hwang, Po-Hsiung Lin, and Hungjui Yu
Atmos. Meas. Tech., 13, 5395–5406, https://doi.org/10.5194/amt-13-5395-2020,https://doi.org/10.5194/amt-13-5395-2020, 2020
Short summary
Use of automatic radiosonde launchers to measure temperature and humidity profiles from the GRUAN perspective
Fabio Madonna, Rigel Kivi, Jean-Charles Dupont, Bruce Ingleby, Masatomo Fujiwara, Gonzague Romanens, Miguel Hernandez, Xavier Calbet, Marco Rosoldi, Aldo Giunta, Tomi Karppinen, Masami Iwabuchi, Shunsuke Hoshino, Christoph von Rohden, and Peter William Thorne
Atmos. Meas. Tech., 13, 3621–3649, https://doi.org/10.5194/amt-13-3621-2020,https://doi.org/10.5194/amt-13-3621-2020, 2020
Short summary
Using global reanalysis data to quantify and correct airflow distortion bias in shipborne wind speed measurements
Sebastian Landwehr, Iris Thurnherr, Nicolas Cassar, Martin Gysel-Beer, and Julia Schmale
Atmos. Meas. Tech., 13, 3487–3506, https://doi.org/10.5194/amt-13-3487-2020,https://doi.org/10.5194/amt-13-3487-2020, 2020
Short summary
The CopterSonde: an insight into the development of a smart unmanned aircraft system for atmospheric boundary layer research
Antonio R. Segales, Brian R. Greene, Tyler M. Bell, William Doyle, Joshua J. Martin, Elizabeth A. Pillar-Little, and Phillip B. Chilson
Atmos. Meas. Tech., 13, 2833–2848, https://doi.org/10.5194/amt-13-2833-2020,https://doi.org/10.5194/amt-13-2833-2020, 2020
Short summary

Cited articles

Axford, D. N.: On the Accuracy of Wind Measurements Using an Inertial Platform in an Aircraft, and an Example of a Measurement of the Vertical Mesostructure of the Atmosphere, J. Appl. Meteorol., 7, 645–666, https://doi.org/10.1175/1520-0450(1968)007<0645:OTAOWM>2.0.CO;2, 1968. a
BACCHUS: BACCHUS, Impact of Biogenic versus Anthropogenic emissions on Clouds and Climate: towards a Holistic UnderStanding, http://www.bacchus-env.eu/ (last access: March 2018), 2016. a
Båserud, L., Reuder, J., Jonassen, M. O., Kral, S. T., Paskyabi, M. B., and Lothon, M.: Proof of concept for turbulence measurements with the RPAS SUMO during the BLLAST campaign, Atmos. Meas. Tech., 9, 4901–4913, https://doi.org/10.5194/amt-9-4901-2016, 2016. a, b, c
Boiffier, J.: The dynamics of flight, the equations, John Wiley and Sons, ISBN: 0 471 94237 5, 1998. a
Brisset, P., Drouin, A., Gorraz, M., Huard, P.-S., and Tyler, J.: The Paparazzi Solution, https://hal-enac.archives-ouvertes.fr/hal-01004157 (last access: March 2018), 2006. a
Download
Short summary
Remotely piloted aircraft systems (RPAS), commonly called UAVs, are used in atmospheric science for in situ measurements. The presented work shows wind measurements from a five-hole probe on an RPAS. Comparisons with other instruments (sonic anemometer and cloud radar) show good agreement, validating the RPAS measurements. In situ vertical wind measurements at cloud base are highlighted because they are a major parameter needed for simulating aerosol–cloud interactions, though rarely collected.