Articles | Volume 11, issue 7
Atmos. Meas. Tech., 11, 4291–4308, 2018
https://doi.org/10.5194/amt-11-4291-2018
Atmos. Meas. Tech., 11, 4291–4308, 2018
https://doi.org/10.5194/amt-11-4291-2018

Research article 20 Jul 2018

Research article | 20 Jul 2018

Estimation of turbulence dissipation rate and its variability from sonic anemometer and wind Doppler lidar during the XPIA field campaign

Nicola Bodini et al.

Related authors

Estimation of turbulence dissipation rate from Doppler wind lidars and in situ instrumentation for the Perdigão 2017 campaign
Norman Wildmann, Nicola Bodini, Julie K. Lundquist, Ludovic Bariteau, and Johannes Wagner
Atmos. Meas. Tech., 12, 6401–6423, https://doi.org/10.5194/amt-12-6401-2019,https://doi.org/10.5194/amt-12-6401-2019, 2019
Short summary
Spatial and temporal variability of turbulence dissipation rate in complex terrain
Nicola Bodini, Julie K. Lundquist, Raghavendra Krishnamurthy, Mikhail Pekour, Larry K. Berg, and Aditya Choukulkar
Atmos. Chem. Phys., 19, 4367–4382, https://doi.org/10.5194/acp-19-4367-2019,https://doi.org/10.5194/acp-19-4367-2019, 2019
Short summary
Three-dimensional structure of wind turbine wakes as measured by scanning lidar
Nicola Bodini, Dino Zardi, and Julie K. Lundquist
Atmos. Meas. Tech., 10, 2881–2896, https://doi.org/10.5194/amt-10-2881-2017,https://doi.org/10.5194/amt-10-2881-2017, 2017
Short summary
Year-to-year correlation, record length, and overconfidence in wind resource assessment
Nicola Bodini, Julie K. Lundquist, Dino Zardi, and Mark Handschy
Wind Energ. Sci., 1, 115–128, https://doi.org/10.5194/wes-1-115-2016,https://doi.org/10.5194/wes-1-115-2016, 2016
Short summary

Related subject area

Subject: Others (Wind, Precipitation, Temperature, etc.) | Technique: Remote Sensing | Topic: Validation and Intercomparisons
Validation of Aeolus Level 2B wind products using wind profilers, ground-based Doppler wind lidars, and radiosondes in Japan
Hironori Iwai, Makoto Aoki, Mitsuru Oshiro, and Shoken Ishii
Atmos. Meas. Tech., 14, 7255–7275, https://doi.org/10.5194/amt-14-7255-2021,https://doi.org/10.5194/amt-14-7255-2021, 2021
Short summary
Monitoring the Tropospheric Monitoring Instrument (TROPOMI) short-wave infrared (SWIR) module instrument stability using desert sites
Tim A. van Kempen, Filippo Oggionni, and Richard M. van Hees
Atmos. Meas. Tech., 14, 6711–6722, https://doi.org/10.5194/amt-14-6711-2021,https://doi.org/10.5194/amt-14-6711-2021, 2021
Short summary
Evaluating the use of Aeolus satellite observations in the regional numerical weather prediction (NWP) model Harmonie–Arome
Susanna Hagelin, Roohollah Azad, Magnus Lindskog, Harald Schyberg, and Heiner Körnich
Atmos. Meas. Tech., 14, 5925–5938, https://doi.org/10.5194/amt-14-5925-2021,https://doi.org/10.5194/amt-14-5925-2021, 2021
Short summary
Towards operational multi-GNSS tropospheric products at GFZ Potsdam
Karina Wilgan, Galina Dick, Florian Zus, and Jens Wickert
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2021-197,https://doi.org/10.5194/amt-2021-197, 2021
Revised manuscript accepted for AMT
Short summary
Inter-comparison of wind measurements in the atmospheric boundary layer with Aeolus and a ground-based coherent Doppler lidar network over China
Songhua Wu, Kangwen Sun, Guangyao Dai, Xiaoye Wang, Xiaoying Liu, Bingyi Liu, Xiaoquan Song, Oliver Reitebuch, Rongzhong Li, Jiaping Yin, and Xitao Wang
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2021-260,https://doi.org/10.5194/amt-2021-260, 2021
Revised manuscript accepted for AMT
Short summary

Cited articles

Aitken, M. L., Rhodes, M. E., and Lundquist, J. K.: Performance of a wind-profiling lidar in the region of wind turbine rotor disks, J. Atmos. Ocean. Tech., 29, 347–355, https://doi.org/10.1175/JTECH-D-11-00033.1, 2012. a
Albertson, J. D., Parlange, M. B., Kiely, G., and Eichinger, W. E.: The average dissipation rate of turbulent kinetic energy in the neutral and unstable atmospheric surface layer, J. Geophys. Res.-Atmos., 102, 13423–13432, 1997. a
Babić, K., Bencetić Klaić, Z., and Večenaj, Ž.: Determining a turbulence averaging time scale by Fourier analysis for the nocturnal boundary layer, Geofizika, 29, 35–51, 2012. a
Baik, J.-J. and Kim, J.-J.: A numerical study of flow and pollutant dispersion characteristics in urban street canyons, J. Appl. Meteorol., 38, 1576–1589, 1999. a
Balsley, B., Frehlich, R., Jensen, M., and Meillier, Y.: High-resolution in situ profiling through the stable boundary layer: examination of the SBL top in terms of minimum shear, maximum stratification, and turbulence decrease, J. Atmos. Sci., 63, 1291–1307, 2006. a
Download
Short summary
Turbulence within the atmospheric boundary layer is critically important to transfer heat, momentum, and moisture. Currently, improved turbulence parametrizations are crucially needed to refine the accuracy of model results at fine horizontal scales. In this study, we calculate turbulence dissipation rate from sonic anemometers and discuss a novel approach to derive turbulence dissipation from profiling lidar measurements.